论文标题

贬义:对人群生成的仇恨言论评估数据集的攻击贬值表达

APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets

论文作者

Yang, Kichang, Jang, Wonjun, Cho, Won Ik

论文摘要

在仇恨言论检测中,开发跨各个领域的培训和评估数据集是关键问题。鉴于,主要方法抓取社交媒体文本并雇用众群落来注释数据。遵循这一惯例通常会限制贬义表达的范围,这些范围缺乏概括的单个领域。有时,培训语料库和评估之间的域重叠,设定了在低数据语言上预处理语言模型时的预测性能。为了减轻韩语中的这些问题,我们提出宣传,要求未指定的用户产生仇恨言论示例,然后是最少的后标签。我们发现,apeach可以收集有用的数据集,这些数据集对训练训练的语料库和评估集之间的词汇重叠不太敏感,从而正确测量了模型性能。

In hate speech detection, developing training and evaluation datasets across various domains is the critical issue. Whereas, major approaches crawl social media texts and hire crowd-workers to annotate the data. Following this convention often restricts the scope of pejorative expressions to a single domain lacking generalization. Sometimes domain overlap between training corpus and evaluation set overestimate the prediction performance when pretraining language models on low-data language. To alleviate these problems in Korean, we propose APEACH that asks unspecified users to generate hate speech examples followed by minimal post-labeling. We find that APEACH can collect useful datasets that are less sensitive to the lexical overlaps between the pretraining corpus and the evaluation set, thereby properly measuring the model performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源