论文标题

3D热对流中惯性颗粒的停留时间:对岩浆储层的影响

Residence time of inertial particles in 3D thermal convection: implications for magma reservoirs

论文作者

Patočka, Vojtěch, Tosi, Nicola, Calzavarini, Enrico

论文摘要

晶体在对流流体中的动态行为决定了岩浆体如何固化。特别是,在沉积在其底部(或顶部,用于光颗粒)之前,估计晶体在宿主液体中的悬浮液中的悬浮液在悬浮液中的悬浮液中通常很重要。我们对载有颗粒的雷利 - 贝纳德对流进行系统的3D数值研究,并为粒子停留时间提供了可靠的模型。对于高于10^7的瑞利数,惯性颗粒的轨迹表现出从流体示踪剂到自由落体动力学的单调过渡,控制参数是粒子stokes速度与流体速度之间的比率。平均沉降速率与粒子在两个末端的机制中的粒子速度成正比,但居住时间的分布在一个到另一个方面的分布明显不同。对于较低的雷利数(<10^7),大规模循环和粒子运动之间的相互作用平均增加了沉降速率。然而,平均停留时间不超过终端时间,即从静态流体的结算时间大于四。一个例外是模拟只有一个稍微超临界的雷利数(〜10^4),为此,固定对流会产生,并且某些粒子无限期地被捕获。相同问题的2D模拟高估了高和低雷利数的流粒子相互作用,因此,因此停留时间,这强调了使用3D几何形状用于模拟颗粒含量的流量的重要性。我们概述了如何使用模型来解释岩浆入侵的沉积层中晶体尺寸分布的深度变化,这些岩浆入侵被认为是通过晶体货物的沉降而形成的,并讨论如何使用固化入侵的微观结构观察来推断过去的岩浆对流速度。

The dynamic behavior of crystals in convecting fluids determines how magma bodies solidify. In particular, it is often important to estimate how long crystals stay in suspension in the host liquid before being deposited at its bottom (or top, for light particles). We perform a systematic 3D numerical study of particle-laden Rayleigh-Benard convection, and derive a robust model for the particle residence time. For Rayleigh numbers higher than 10^7, inertial particles' trajectories exhibit a monotonic transition from fluid tracer-like to free-fall dynamics, the control parameter being the ratio between particle Stokes velocity and the fluid velocity. The average settling rate is proportional to the particle Stokes velocity in both the end-member regimes, but the distribution of the residence times differs markedly from one to the other. For lower Rayleigh numbers (<10^7), an interaction between large-scale circulation and particle motion emerges, increasing the settling rates on average. Nevertheless, the mean residence time does not exceed the terminal time, i.e. the settling time from a quiescent fluid, by a factor larger than four. An exception are simulations with only a slightly super-critical Rayleigh number (~ 10^4), for which stationary convection develops and some particles become trapped indefinitely. 2D simulations of the same problem overestimate the flow-particle interaction - and hence the residence time - for both high and low Rayleigh numbers, which stresses the importance of using 3D geometries for simulating particle-laden flows. We outline how our model can be used to explain depth changes of crystal size distribution in sedimentary layers of magmatic intrusions that are thought to have formed via settling of a crystal cargo, and discuss how the micro-structural observations of solidified intrusions can be used to infer the past convective velocity of magma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源