论文标题
可分离的对称张量和可分离的抗对称张量
Separable symmetric tensors and separable anti-symmetric tensors
论文作者
论文摘要
在本文中,我们首先介绍了均衡张量和可分离张量的可逆性,包括可分离的对称张量和可分离的抗对称张量,分别定义为总和和秩-1张量的代数和代数,由某些矢量的张量产物产生,例如,$ v_ $ v_ {$ v_ {v_ $ ld},v_ $ ld},mot},mot},mot},m。我们表明$ m!$ sumrands,每个形式$ v_ {σ(1)} \ times v_ {σ(2)} \ times \ times \ times \ times \ times v_ {σ(m)} $是线性独立的,如果$ v_ {1},v_ {1},v_ {2},v_ {2},$ worly是在$ \ set {1,2,\ ldots,m} $上。我们提供一类张量,以在r^{3 \ times 3 \ times 3} $中获得$ \ rank(a)\ leq 6 $的上限(a)\ leq 6 $。我们还表明,每个$ 3 \ times 3 \ times 3 $反对称张量都是可分离的。
In this paper, we first introduce the invertibility of even-order tensors and the separable tensors, including separable symmetry tensors and separable anti-symmetry tensors, defined respectively as the sum and the algebraic sum of rank-1 tensors generated by the tensor product of some vectors, say, $v_{1}, v_{2}, \ldots, v_{m}$. We show that the $m!$ sumrands, each in form $v_{σ(1)}\times v_{σ(2)}\times\ldots\times v_{σ(m)}$, are linearly independent if $v_{1},v_{2}, \ldots, v_{m}$ are linearly independent, where $σ$ is any permutation on $\set{1,2,\ldots,m}$. We offer a class of tensors to achieve the upper bound for $\rank(A) \leq 6$ for all $A\in R^{3\times 3\times 3}$. We also show that each $3\times 3\times 3$ anti-symmetric tensor is separable.