论文标题
关于挖掘的系统文献综述:使用机器驱动分析来产生想法
A Systematic Literature Review about Idea Mining: The Use of Machine-driven Analytics to Generate Ideas
论文作者
论文摘要
想法产生是创新的核心活动。数字数据源是创新的来源,例如专利,出版物,社交媒体,网站等,越来越多地以前所未有的量增长。手动思想产生是耗时的,受到相关个人的主观性的影响。因此,使用机器驱动的数据分析技术来分析数据以通过为用户提供服务来生成思想并支持创意的生成。这项研究的目的是研究针对思想产生和数据源的机器驱动分析的最新分析,因此,这项研究的结果通常将作为选择技术和数据源的指南。进行了系统的文献综述,以确定IEEE,Scopus,Web of Science和Google Scholar的相关学术文献。我们总共选择了71篇文章,并以主题分析了它们。这项研究的结果表明,通过机器驱动的分析产生思想,应用文本挖掘,信息检索(IR),人工智能(AI),深度学习,机器学习,统计技术,自然语言处理(NLP),基于NLP的形态分析,网络分析,网络分析和三个文献量,以支持创意创意。结果包括通过机器驱动的思想分析中思想生成中的技术和程序列表。此外,总结了思想产生中使用的表征和启发式方法。对于未来,可以探索旨在生成想法的工具。
Idea generation is the core activity of innovation. Digital data sources, which are sources of innovation, such as patents, publications, social media, websites, etc., are increasingly growing at unprecedented volume. Manual idea generation is time-consuming and is affected by the subjectivity of the individuals involved. Therefore, the use machine-driven data analytics techniques to analyze data to generate ideas and support idea generation by serving users is useful. The objective of this study is to study state-of the-art machine-driven analytics for idea generation and data sources, hence the result of this study will generally server as a guideline for choosing techniques and data sources. A systematic literature review is conducted to identify relevant scholarly literature from IEEE, Scopus, Web of Science and Google Scholar. We selected a total of 71 articles and analyzed them thematically. The results of this study indicate that idea generation through machine-driven analytics applies text mining, information retrieval (IR), artificial intelligence (AI), deep learning, machine learning, statistical techniques, natural language processing (NLP), NLP-based morphological analysis, network analysis, and bibliometric to support idea generation. The results include a list of techniques and procedures in idea generation through machine-driven idea analytics. Additionally, characterization and heuristics used in idea generation are summarized. For the future, tools designed to generate ideas could be explored.