论文标题

2021 Beetl竞争:推进主题独立和异源脑电图数据集的转移学习

2021 BEETL Competition: Advancing Transfer Learning for Subject Independence & Heterogenous EEG Data Sets

论文作者

Wei, Xiaoxi, Faisal, A. Aldo, Grosse-Wentrup, Moritz, Gramfort, Alexandre, Chevallier, Sylvain, Jayaram, Vinay, Jeunet, Camille, Bakas, Stylianos, Ludwig, Siegfried, Barmpas, Konstantinos, Bahri, Mehdi, Panagakis, Yannis, Laskaris, Nikolaos, Adamos, Dimitrios A., Zafeiriou, Stefanos, Duong, William C., Gordon, Stephen M., Lawhern, Vernon J., Śliwowski, Maciej, Rouanne, Vincent, Tempczyk, Piotr

论文摘要

转移学习和元学习提供了一些最有前途的途径,以解锁由生物信号数据驱动的医疗保健和消费者技术的可扩展性。这是因为当前方法无法在人类受试者的数据中很好地概括,并从不同的异质收集的数据集中处理学习,从而限制了培训数据的规模。另一方面,转移学习的发展将从现实的基准中受益于具有实际应用的现实基准。因此,我们选择脑电图(EEG)作为使生物信号机学习的典范。我们设计了围绕诊断和脑部计算机间隔(BCI)的两个转移学习挑战,这些挑战必须在面对低信噪比,受试者之间的重大差异,数据记录会话和技术的差异,甚至在数据集中记录的特定BCI任务之间解决。任务1集中在医学诊断领域,涉及跨受试者的自动睡眠阶段注释。任务2集中在脑部计算器接口(BCI)上,探讨了对受试者和数据集的电动图像解码。甲虫与30多个竞争团队及其3个获胜参赛作品的竞争引起了人们对深度转移学习以及集合理论和常规机器学习技术组合的潜力,以克服挑战。结果为现实世界中的甜菜基准树立了新的最新最新。

Transfer learning and meta-learning offer some of the most promising avenues to unlock the scalability of healthcare and consumer technologies driven by biosignal data. This is because current methods cannot generalise well across human subjects' data and handle learning from different heterogeneously collected data sets, thus limiting the scale of training data. On the other side, developments in transfer learning would benefit significantly from a real-world benchmark with immediate practical application. Therefore, we pick electroencephalography (EEG) as an exemplar for what makes biosignal machine learning hard. We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI), that have to be solved in the face of low signal-to-noise ratios, major variability among subjects, differences in the data recording sessions and techniques, and even between the specific BCI tasks recorded in the dataset. Task 1 is centred on the field of medical diagnostics, addressing automatic sleep stage annotation across subjects. Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets. The BEETL competition with its over 30 competing teams and its 3 winning entries brought attention to the potential of deep transfer learning and combinations of set theory and conventional machine learning techniques to overcome the challenges. The results set a new state-of-the-art for the real-world BEETL benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源