论文标题
HCIL:长线钓鱼视觉监控的分层类增量学习
HCIL: Hierarchical Class Incremental Learning for Longline Fishing Visual Monitoring
论文作者
论文摘要
电子监测长期捕鱼的目的是根据相机观察监视渔船上的鱼类捕捞活动,无论是用于调节性的合规性还是捕获计数。先前的分层分类方法表明,有效的鱼类物种鉴定了longline捕捞的捕捞量,在捕获过程中,鱼类处于严重的变形和自我周期性。尽管分层分类通过提供不同层次级别的置信度得分来减轻人类评论的艰苦努力,但在班级增量学习(CIL)方案下,其绩效显着下降。 CIL系统应该能够从一系列数据流中学习越来越多的类别,即,只有少数类的培训数据才能在开始时出现,并且可以逐步添加新类。在这项工作中,我们引入了层次类增量学习(HCIL)模型,该模型可显着改善CIL方案下最新的层次分类方法。
The goal of electronic monitoring of longline fishing is to visually monitor the fish catching activities on fishing vessels based on cameras, either for regulatory compliance or catch counting. The previous hierarchical classification method demonstrates efficient fish species identification of catches from longline fishing, where fishes are under severe deformation and self-occlusion during the catching process. Although the hierarchical classification mitigates the laborious efforts of human reviews by providing confidence scores in different hierarchical levels, its performance drops dramatically under the class incremental learning (CIL) scenario. A CIL system should be able to learn about more and more classes over time from a stream of data, i.e., only the training data for a small number of classes have to be present at the beginning and new classes can be added progressively. In this work, we introduce a Hierarchical Class Incremental Learning (HCIL) model, which significantly improves the state-of-the-art hierarchical classification methods under the CIL scenario.