论文标题

RL-PGO:基于增强学习的平面姿势图形优化

RL-PGO: Reinforcement Learning-based Planar Pose-Graph Optimization

论文作者

Kourtzanidis, Nikolaos, Saeedi, Sajad

论文摘要

姿势大满贯或姿势图片优化(PGO)的目的是估计机器人给定的探空仪和循环闭合约束的轨迹。最新的迭代方法通常涉及非凸目标函数的线性化,然后反复求解一组正常方程。此外,这些方法可能会收敛到局部最小值,从而产生亚最佳结果。在这项工作中,我们据我们最大程度地展示了基于第一个深入的强化学习(DRL)的环境和2D姿势优化的拟议代理。我们证明,姿势图优化问题可以建模为可观察到的马尔可夫决策过程,并评估现实世界和合成数据集的性能。提议的代理在具有挑战性的实例上优于最先进的求解器G2O,在这种情况下,传统的非线性最小二乘技术可能会失败或收敛到不令人满意的解决方案。实验结果表明,基于迭代的求解器以所提出的方法进行了自举允许的质量估计明显更高。我们认为,基于增强学习的PGO是进一步加速研究全球最佳算法的有前途的途径。因此,我们的工作为2D姿势SLAM领域的新优化策略铺平了道路。

The objective of pose SLAM or pose-graph optimization (PGO) is to estimate the trajectory of a robot given odometric and loop closing constraints. State-of-the-art iterative approaches typically involve the linearization of a non-convex objective function and then repeatedly solve a set of normal equations. Furthermore, these methods may converge to a local minima yielding sub-optimal results. In this work, we present to the best of our knowledge the first Deep Reinforcement Learning (DRL) based environment and proposed agent for 2D pose-graph optimization. We demonstrate that the pose-graph optimization problem can be modeled as a partially observable Markov Decision Process and evaluate performance on real-world and synthetic datasets. The proposed agent outperforms state-of-the-art solver g2o on challenging instances where traditional nonlinear least-squares techniques may fail or converge to unsatisfactory solutions. Experimental results indicate that iterative-based solvers bootstrapped with the proposed approach allow for significantly higher quality estimations. We believe that reinforcement learning-based PGO is a promising avenue to further accelerate research towards globally optimal algorithms. Thus, our work paves the way to new optimization strategies in the 2D pose SLAM domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源