论文标题

电力网络差分代数方程模型的观察者:共同估计动态和代数状态

Observers for Differential Algebraic Equation Models of Power Networks: Jointly Estimating Dynamic and Algebraic States

论文作者

Nugroho, Sebastian, Taha, Ahmad, Gatsis, Nikolaos, Zhao, Junbo

论文摘要

相量测量单元({pmus})已在现代电力系统中起着作用,以实现实时,广阔的区域监控和控制。因此,许多研究已经研究了有效且健壮的动态状态估计(DSE)方法,以便准确计算生成单元的动态状态。但是,其中大多数放弃了动力网络的动态代数性质,仅考虑其非线性动态表示。由于缺乏基于功率网络的差异代数方程(DAE)的DSE方法的动机,本文开发了一种新型的基于观察者的DSE框架,以便对多机械幂网络的动态和代数状态进行同时估算。具体而言,我们利用了操作点围绕功率网络的DAE动力学,并将它们与能够捕获总线电压和线电流的基于PMU的测量模型相结合。所提出的$ \ Mathcal {H} _ {\ infty} $观察者,仅需要可检测性和脉冲可观察性条件,这些条件可满足各种功率网络,旨在处理各种噪声,未知输入,输入传感器失败。通过对IEEE $ 9 $ -BUS和$ 39 $ -BUS Systems进行大量数值模拟而获得的结果,展示了拟议方法用于DSE的有效性。

Phasor measurement units ({PMUs}) have become instrumental in modern power systems for enabling real-time, wide-area monitoring and control. Accordingly, many studies have investigated efficient and robust dynamic state estimation (DSE) methods in order to accurately compute the dynamic states of generation units. Nonetheless, most of them forego the dynamic-algebraic nature of power networks and only consider their nonlinear dynamic representations. Motivated by the lack of DSE methods based on power network's differential-algebraic equations (DAEs), this paper develops a novel observer-based DSE framework in order to perform simultaneous estimation of the dynamic and algebraic states of multi-machine power networks. Specifically, we leverage the DAE dynamics of a power network around an operating point and combine them with a PMU-based measurement model capable of capturing bus voltages and line currents. The proposed $\mathcal{H}_{\infty}$ observer, which only requires detectability and impulse observability conditions which are satisfied for various power networks, is designed to handle various noise, unknown inputs, and input sensor failures. The results obtained from performing extensive numerical simulations on the IEEE $9$-bus and $39$-bus systems showcase the effectiveness of the proposed approach for DSE purposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源