论文标题

PANOFLOW:学习360°光流,用于周围的时间理解

PanoFlow: Learning 360° Optical Flow for Surrounding Temporal Understanding

论文作者

Shi, Hao, Zhou, Yifan, Yang, Kailun, Yin, Xiaoting, Wang, Ze, Ye, Yaozu, Yin, Zhe, Meng, Shi, Li, Peng, Wang, Kaiwei

论文摘要

光流估计是自动驾驶和机器人系统系统中的一项基本任务,它可以在时间上解释流量场景。自动驾驶汽车显然受益于360°全景传感器提供的超宽视野(FOV)。但是,由于全景相机的独特成像过程,专为针孔图像设计的模型不会令人满意地概括为360°全景图像。在本文中,我们提出了一个新颖的网络框架 - panoflow,以学习全景图像的光流。为了克服全景转化中等应角投影引起的扭曲,我们设计了一种流动失真增强(FDA)方法,其中包含径向流量失真(FDA-R)或等骨流量失真(FDA-E)。我们进一步研究了全景视频的环状光流的定义和特性,并通过利用球形图像的环状来推断360°光流并将大型位移转化为相对较小的位移,从而提出了环状流量估计(CFE)方法。 Panoflow适用于任何现有的流量估计方法,并从狭窄的FOV流量估计的进度中受益。此外,我们创建并释放基于CARLA的合成全景数据集Flowscape,以促进训练和定量分析。 Panoflow在公共Omniflownet和已建立的Flowscape基准测试中实现了最先进的表现。我们提出的方法将Flowscape上的端点纠错(EPE)降低了27.3%。在Omniflownet上,Panoflow从最佳发布的结果中降低了55.5%的误差。我们还通过收集工具和公共现实世界中的全球数据集对我们的方法进行定性验证我们的方法,这表明对现实世界导航应用程序的强大潜力和鲁棒性。代码和数据集可在https://github.com/masterhow/panoflow上公开获取。

Optical flow estimation is a basic task in self-driving and robotics systems, which enables to temporally interpret traffic scenes. Autonomous vehicles clearly benefit from the ultra-wide Field of View (FoV) offered by 360° panoramic sensors. However, due to the unique imaging process of panoramic cameras, models designed for pinhole images do not directly generalize satisfactorily to 360° panoramic images. In this paper, we put forward a novel network framework--PanoFlow, to learn optical flow for panoramic images. To overcome the distortions introduced by equirectangular projection in panoramic transformation, we design a Flow Distortion Augmentation (FDA) method, which contains radial flow distortion (FDA-R) or equirectangular flow distortion (FDA-E). We further look into the definition and properties of cyclic optical flow for panoramic videos, and hereby propose a Cyclic Flow Estimation (CFE) method by leveraging the cyclicity of spherical images to infer 360° optical flow and converting large displacement to relatively small displacement. PanoFlow is applicable to any existing flow estimation method and benefits from the progress of narrow-FoV flow estimation. In addition, we create and release a synthetic panoramic dataset FlowScape based on CARLA to facilitate training and quantitative analysis. PanoFlow achieves state-of-the-art performance on the public OmniFlowNet and the established FlowScape benchmarks. Our proposed approach reduces the End-Point-Error (EPE) on FlowScape by 27.3%. On OmniFlowNet, PanoFlow achieves a 55.5% error reduction from the best published result. We also qualitatively validate our method via a collection vehicle and a public real-world OmniPhotos dataset, indicating strong potential and robustness for real-world navigation applications. Code and dataset are publicly available at https://github.com/MasterHow/PanoFlow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源