论文标题

评估深度学习中的高阶预测分布

Evaluating High-Order Predictive Distributions in Deep Learning

论文作者

Osband, Ian, Wen, Zheng, Asghari, Seyed Mohammad, Dwaracherla, Vikranth, Lu, Xiuyuan, Van Roy, Benjamin

论文摘要

大多数有关监督学习研究的工作都集中在边际预测上。在决策问题中,联合预测分布对于良好的表现至关重要。先前的工作已经开发了评估低阶预测分布的方法,并采样了I.I.D.的输入。来自测试分布。通过低维输入,这些方法将有效估计不确定性与没有的不确定性的药物区分开来。我们确定这种分化所需的预测分配顺序随输入维度而大大增加,从而使这些方法不切实际。为了容纳高维输入,我们介绍了\ textIt {dyadic采样},该{二元采样}的重点是与输入的随机\ textit {pairs}相关的预测分布。我们证明,这种方法有效地区分了涉及简单逻辑回归以及复杂合成和经验数据的高维示例中的药物。

Most work on supervised learning research has focused on marginal predictions. In decision problems, joint predictive distributions are essential for good performance. Previous work has developed methods for assessing low-order predictive distributions with inputs sampled i.i.d. from the testing distribution. With low-dimensional inputs, these methods distinguish agents that effectively estimate uncertainty from those that do not. We establish that the predictive distribution order required for such differentiation increases greatly with input dimension, rendering these methods impractical. To accommodate high-dimensional inputs, we introduce \textit{dyadic sampling}, which focuses on predictive distributions associated with random \textit{pairs} of inputs. We demonstrate that this approach efficiently distinguishes agents in high-dimensional examples involving simple logistic regression as well as complex synthetic and empirical data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源