论文标题

沿着巨大的狄拉克方程的行进边缘沿着慢慢变化的边缘

Traveling edge states in massive Dirac equations along slowly varying edges

论文作者

Hu, Pipi, Xie, Peng, Zhu, Yi

论文摘要

由于其在许多不同领域中的新型特性和潜在的应用,拓扑保护的波动运动引起了人们的极大兴趣。在这项工作中,我们通过带有所谓域壁块的线性狄拉克方程来研究边缘模式和行进边缘状态。单向边缘状态通过缓慢变化的边缘通过局部行为为更通用的旅行边缘状态提供了一种启发式方法。我们显示了两个典型边缘状态的领先渐近溶液,它们遵循通过分析和定量参数且曲率较小的圆形和弯曲的边缘。

Topologically protected wave motion has attracted considerable interest due to its novel properties and potential applications in many different fields. In this work, we study edge modes and traveling edge states via the linear Dirac equations with so-called domain wall masses. The unidirectional edge state provides a heuristic approach to more general traveling edge states through the localized behavior along slowly varying edges. We show the leading asymptotic solutions of two typical edge states that follow the circular and curved edges with small curvature by analytic and quantitative arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源