论文标题

基因组:史诗本体论建模的通用方法论

GENOME: A GENeric methodology for Ontological Modelling of Epics

论文作者

Varadarajan, Udaya, Bagchi, Mayukh, Tiwari, Amit, Satija, M. P.

论文摘要

史诗的本体论知识建模,尽管是一个以具体多语言和多元文化作品为支持的既定研究领域,但仍然遭受两个关键的缺点。首先,迄今为止,所有史诗般的本体论模型均经过临时方法论,通常是结合了现有的通用本体开发方法。其次,临时方法论没有考虑现有的Epic本体论模型的潜在重复利用,以便富集(如果有)。该论文将基因组的设计和开发作为统一的解决方案,这是史诗的迭代本体论建模的第一个专用方法,这对于一般数字人文科学的不同研究领域的作品可能可以扩展。基因组基于史诗规范规范的跨学科基础,知识建模最佳实践,应用满足规范和认知生成性问题。它也是第一种方法(在史诗建模中,也是一般而言),可以灵活地在实践中通过重复使用或从头开始整合知识建模的选项。基因组的可行性通过首次简要实施印度史诗 - 摩abhar玛哈拉塔的本体论建模,通过重复现有的本体论来验证。初步结果是有希望的,基因组生产的模型在本体论和性能上既有胜任

Ontological knowledge modelling of epics, though being an established research arena backed by concrete multilingual and multicultural works, still suffer from two key shortcomings. Firstly, all epic ontological models developed till date have been designed following ad-hoc methodologies, most often, combining existing general purpose ontology development methodologies. Secondly, none of the ad-hoc methodologies consider the potential reuse of existing epic ontological models for enrichment, if available. The paper presents, as a unified solution to the above shortcomings, the design and development of GENOME - the first dedicated methodology for iterative ontological modelling of epics, potentially extensible to works in different research arenas of digital humanities in general. GENOME is grounded in transdisciplinary foundations of canonical norms for epics, knowledge modelling best practices, application satisfiability norms and cognitive generative questions. It is also the first methodology (in epic modelling but also in general) to be flexible enough to integrate, in practice, the options of knowledge modelling via reuse or from scratch. The feasibility of GENOME is validated via a first brief implementation of ontological modelling of the Indian epic - Mahabharata by reusing an existing ontology. The preliminary results are promising, with the GENOME-produced model being both ontologically thorough and performance-wise competent

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源