论文标题

DeepFake网络体系结构归因

Deepfake Network Architecture Attribution

论文作者

Yang, Tianyun, Huang, Ziyao, Cao, Juan, Li, Lei, Li, Xirong

论文摘要

随着发电技术的快速发展,有必要归因假图像的起源。关于假图像归因的现有作品在几个生成对抗网络(GAN)模型上执行多类分类并获得高精度。在令人鼓舞的同时,这些作品仅限于模型级归因,只能处理具有特定种子,丢失和数据集的可见模型生成的图像,当假型图像可能由私人训练的模型生成时,在现实世界中受到限制。这促使我们询问是否可以将假图像归因于源模型的体系结构,即使它们在不同的配置下进行了填充或重新训练。在这项工作中,我们介绍了有关DeepFake网络体系结构归因于构架级别的伪造图像的首次研究。基于一个观察到,GAN结构可能会留下全球一致的指纹,而模型权重的痕迹在不同的区域有所不同,我们为此问题提供了一个简单而有效的解决方案DNA-DET。对多个跨测试设置和大规模数据集进行了广泛的实验证明了DNA-DET的有效性。

With the rapid progress of generation technology, it has become necessary to attribute the origin of fake images. Existing works on fake image attribution perform multi-class classification on several Generative Adversarial Network (GAN) models and obtain high accuracies. While encouraging, these works are restricted to model-level attribution, only capable of handling images generated by seen models with a specific seed, loss and dataset, which is limited in real-world scenarios when fake images may be generated by privately trained models. This motivates us to ask whether it is possible to attribute fake images to the source models' architectures even if they are finetuned or retrained under different configurations. In this work, we present the first study on Deepfake Network Architecture Attribution to attribute fake images on architecture-level. Based on an observation that GAN architecture is likely to leave globally consistent fingerprints while traces left by model weights vary in different regions, we provide a simple yet effective solution named DNA-Det for this problem. Extensive experiments on multiple cross-test setups and a large-scale dataset demonstrate the effectiveness of DNA-Det.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源