论文标题
使用自然语言处理的废水管道评级模型
Wastewater Pipe Rating Model Using Natural Language Processing
论文作者
论文摘要
闭路视频(CCTV)检查一直是近几十年来视觉评估管道内部状态的最流行技术。认证的检查员根据CCTV检查准备管道维修文件。评估管道维修文件的污水结构条件的传统手动方法需要很长时间,并且容易遇到人类错误。必要文本的自动识别很少受到关注。通过构建使用自然语言处理(NLP)的自动框架,本研究提出了一种有效的技术,可以自动识别管道维修文档的管道缺陷额定值。在这项研究中,使用NLP技术将文本材料分解为语法单元。进一步的分析需要使用单词发现管道缺陷症状及其频率,然后将该信息组合为单个分数。我们的模型达到了95.0%的精度,94.9%的灵敏度,94.4%的特异性,95.9%的精度得分和95.7%的F1分数,显示了在大规模管道维修文档中使用的拟议模型的潜力,以进行准确有效的管道故障检测,以提高管道质量。关键字:下水道管检查,缺陷检测,自然语言处理,文本识别
Closed-circuit video (CCTV) inspection has been the most popular technique for visually evaluating the interior status of pipelines in recent decades. Certified inspectors prepare the pipe repair document based on the CCTV inspection. The traditional manual method of assessing sewage structural conditions from pipe repair documents takes a long time and is prone to human mistakes. The automatic identification of necessary texts has received little attention. By building an automated framework employing Natural Language Processing (NLP), this study presents an effective technique to automate the identification of the pipe defect rating of the pipe repair documents. NLP technologies are employed to break down textual material into grammatical units in this research. Further analysis entails using words to discover pipe defect symptoms and their frequency and then combining that information into a single score. Our model achieves 95.0% accuracy,94.9% sensitivity, 94.4% specificity, 95.9% precision score, and 95.7% F1 score, showing the potential of the proposed model to be used in large-scale pipe repair documents for accurate and efficient pipeline failure detection to improve the quality of the pipeline. Keywords: Sewer pipe inspection, Defect detection, Natural language processing, Text recognition