论文标题
NSTX-U中平衡的神经网络建模
Neural net modeling of equilibria in NSTX-U
论文作者
论文摘要
神经网络(NNS)比传统的物理知识计算模型提供了综合和解释更快时间范围数据的途径。在这项工作中,我们开发了两个与平衡和形状控制建模相关的神经网络,它们是为国家球形圆环实验升级(NSTX-U)开发的一组工具的一部分,用于快速预测,优化和可视化等离子体场景。这些网络包括EQNET,这是一种在EFIT01重建算法上训练的自由边缘平衡求解器,以及在GSPERT代码上训练的PERTNET,并预测了非刚性等离子体响应,这是一种非线性术语,在形状控制模型中产生。对NNS进行了不同的输入和输出组合,以便在用例中提供灵活性。特别是,EQNET可以将磁性诊断作为输入,并用作EFIT样重建算法,或者通过使用压力和电流信息信息,NN可以充当正向级别的shafranov均值求求解器。设想在模拟等离子体方案的工具套件中实现此前向模式版本。与在线重建代码实时EFIT(RTEFIT)相比,重建模式版本可提供一些性能的改进,尤其是在容器涡流很大的情况下。我们报告所有NN的强大性能,表明该模型可以可靠地用于闭环模拟或其他应用程序中。讨论了一些限制。
Neural networks (NNs) offer a path towards synthesizing and interpreting data on faster timescales than traditional physics-informed computational models. In this work we develop two neural networks relevant to equilibrium and shape control modeling, which are part of a suite of tools being developed for the National Spherical Torus Experiment-Upgrade (NSTX-U) for fast prediction, optimization, and visualization of plasma scenarios. The networks include Eqnet, a free-boundary equilibrium solver trained on the EFIT01 reconstruction algorithm, and Pertnet, which is trained on the Gspert code and predicts the non-rigid plasma response, a nonlinear term that arises in shape control modeling. The NNs are trained with different combinations of inputs and outputs in order to offer flexibility in use cases. In particular, Eqnet can use magnetic diagnostics as inputs and act as an EFIT-like reconstruction algorithm, or, by using pressure and current profile information the NN can act as a forward Grad-Shafranov equilibrium solver. This forward-mode version is envisioned to be implemented in the suite of tools for simulation of plasma scenarios. The reconstruction-mode version gives some performance improvements compared to the online reconstruction code real-time EFIT (RTEFIT), especially when vessel eddy currents are significant. We report strong performance for all NNs indicating that the models could reliably be used within closed-loop simulations or other applications. Some limitations are discussed.