论文标题
在希尔伯特空间上触摸多功能
Touching multifunctions on a Hilbert space
论文作者
论文摘要
我们介绍了在真正的希尔伯特空间上接触两个多功能的概念,并推断出该空间上的某些多功能物具有独特的固定点。这些结果应用于genaralized循环和广义间隙向量的理论,用于将投影组成到实际希尔伯特空间中有限数量的封闭凸空间上。
We introduce the concept of the touching of two multifunctions on a real Hilbert space, and deduce that certain multifunctions on the space have a unique fixed point. These result are applied to the theory of genaralized cycles and generalized gap vectors for the composition of the projections onto a finite number of closed convex space in a real Hilbert space.