论文标题
限制平滑$ p $ - 华盛顿距离的分布理论
Limit distribution theory for smooth $p$-Wasserstein distances
论文作者
论文摘要
Wasserstein距离是概率度量空间上的度量,该度量已经在统计,机器学习和应用数学中广泛应用。但是,瓦斯恒星距离的统计方面是由维数的诅咒瓶颈,即准确估算它们所需的数据点的数量随尺寸呈指数增长。最近引入了高斯平滑,以减轻维度的诅咒,在任何维度上产生参数收敛速率,同时保留Wasserstein度量和拓扑结构。为了促进有效的统计推断,在这项工作中,我们为经验平滑的沃斯坦距离开发了综合的极限分布理论。极限分布导致在将瓦斯汀距离的域嵌入到某个双重SOBOLEV空间中后,利用功能增量方法来利用功能性增量方法,从而表征了双重Sobolev Norm的Hadamard定向衍生物,并确定双重空间中平滑经验过程的弱收敛。为了估计分布限制,我们还建立了非参数bootstrap的一致性。最后,我们使用极限分布理论通过平滑的沃瑟斯坦距离通过最小距离估计来研究生成建模的应用,显示了二次成本的最佳溶液的渐近态性。
The Wasserstein distance is a metric on a space of probability measures that has seen a surge of applications in statistics, machine learning, and applied mathematics. However, statistical aspects of Wasserstein distances are bottlenecked by the curse of dimensionality, whereby the number of data points needed to accurately estimate them grows exponentially with dimension. Gaussian smoothing was recently introduced as a means to alleviate the curse of dimensionality, giving rise to a parametric convergence rate in any dimension, while preserving the Wasserstein metric and topological structure. To facilitate valid statistical inference, in this work, we develop a comprehensive limit distribution theory for the empirical smooth Wasserstein distance. The limit distribution results leverage the functional delta method after embedding the domain of the Wasserstein distance into a certain dual Sobolev space, characterizing its Hadamard directional derivative for the dual Sobolev norm, and establishing weak convergence of the smooth empirical process in the dual space. To estimate the distributional limits, we also establish consistency of the nonparametric bootstrap. Finally, we use the limit distribution theory to study applications to generative modeling via minimum distance estimation with the smooth Wasserstein distance, showing asymptotic normality of optimal solutions for the quadratic cost.