论文标题

超快增强铁磁双层中的界面交换耦合

Ultrafast enhancement of interfacial exchange coupling in ferromagnetic bilayer

论文作者

Liu, X., Yuan, H. C., Liu, P., Shi, J. Y., Wang, H. L., Nie, S. H., Jin, F., Zheng, Z., Yu, X. Z., Zhao, J. H., Zhao, H. B., Lüpke, G.

论文摘要

磁异质结构中的快速自旋操作,其中不同材料之间的磁相互作用通常定义了设备的功能,这是超快自旋形成的关键问题。尽管最近开发的光学方法,例如超快旋转转移和自旋轨道扭矩开放新的途径进行快速自旋操作,但这些过程并未完全利用铁磁多层系统中界面磁耦合效应提供的独特可能性。在这里,我们在实验上证明了铁磁性CO $ _2 $ feal/(GA,MN)在低激光量水平下的超快光增强界面交换相互作用。 Co $ _2 $ feal与(GA,MN)的激发效率是图层的30-40倍,比GAAS层在5 K时高30-40倍,这是由于通过光激发电荷传输的光电增强交换耦合互动,在两个Ferromagnetic层之间。此外,连贯的自旋进度持续到室温,不包括(GA,MN)中的光增强磁化驱动器作为层,并指示与邻近效应相关的光激发机制。结果突出了考虑铁磁异质结构中界面交换相互作用范围的重要性,以及如何将这些磁耦合效应用于超快,低功率自旋操作。

Fast spin manipulation in magnetic heterostructures, where magnetic interactions between different materials often define the functionality of devices, is a key issue in the development of ultrafast spintronics. Although recently developed optical approaches such as ultrafast spin-transfer and spin-orbit torques open new pathways to fast spin manipulation, these processes do not fully utilize the unique possibilities offered by interfacial magnetic coupling effects in ferromagnetic multilayer systems. Here, we experimentally demonstrate ultrafast photo-enhanced interfacial exchange interactions in the ferromagnetic Co$_2$FeAl/(Ga,Mn)As system at low laser fluence levels. The excitation efficiency of Co$_2$FeAl with the (Ga,Mn)As layer is 30-40 times higher than the case with the GaAs layer at 5 K due to a photo-enhanced exchange coupling interaction via photoexcited charge transfer between the two ferromagnetic layers. In addition, the coherent spin precessions persist to room temperature, excluding the drive of photo-enhanced magnetization in the (Ga,Mn)As layer and indicating a proximity-effect-related optical excitation mechanism. The results highlight the importance of considering the range of interfacial exchange interactions in ferromagnetic heterostructures and how these magnetic coupling effects can be utilized for ultrafast, low-power spin manipulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源