论文标题

通过单调约束来解释的分子图生成

Interpretable Molecular Graph Generation via Monotonic Constraints

论文作者

Du, Yuanqi, Guo, Xiaojie, Shehu, Amarda, Zhao, Liang

论文摘要

设计具有特定特性的分子是一个持久的研究问题,对于推进关键领域(例如药物发现和材料科学)至关重要。深图生成模型的最新进展将分子设计视为图生成问题,这为突破这个持久问题提供了新的机会。但是,现有模型存在许多缺点,包括对所需分子特性的可解释性和可控性。本文通过提出新的单调规范化的图形自动化模型,重点介绍具有可解释和可控制的深层生成模型的分子生成的新方法。所提出的模型学会说明具有潜在变量的分子,然后学习它们之间的对应关系以及通过多项式函数参数参数的分子属性。为了进一步提高分子生成所需特性的可疏松性和可控性,我们得出了新的目标,这些目标进一步实施了某些潜在变量和靶分子特性(例如毒性和clogp)之间关系的单调性。广泛的实验评估证明了所提出的框架对准确性,新颖性,分离和控制所需分子特性的优势。该代码是https://anonymon.4open.science/r/mdvae-fd2c的开源。

Designing molecules with specific properties is a long-lasting research problem and is central to advancing crucial domains such as drug discovery and material science. Recent advances in deep graph generative models treat molecule design as graph generation problems which provide new opportunities toward the breakthrough of this long-lasting problem. Existing models, however, have many shortcomings, including poor interpretability and controllability toward desired molecular properties. This paper focuses on new methodologies for molecule generation with interpretable and controllable deep generative models, by proposing new monotonically-regularized graph variational autoencoders. The proposed models learn to represent the molecules with latent variables and then learn the correspondence between them and molecule properties parameterized by polynomial functions. To further improve the intepretability and controllability of molecule generation towards desired properties, we derive new objectives which further enforce monotonicity of the relation between some latent variables and target molecule properties such as toxicity and clogP. Extensive experimental evaluation demonstrates the superiority of the proposed framework on accuracy, novelty, disentanglement, and control towards desired molecular properties. The code is open-source at https://anonymous.4open.science/r/MDVAE-FD2C.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源