论文标题

通过物理图形的机器学习对二阶非铁皮效应的实验鉴定

Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning

论文作者

Shang, Ce, Liu, Shuo, Shao, Ruiwen, Han, Peng, Zang, Xiaoning, Zhang, Xiangliang, Salama, Khaled Nabil, Gao, Wenlong, Lee, Ching Hua, Thomale, Ronny, Manchon, Aurelien, Zhang, Shuang, Cui, Tie Jun, Schwingenschlogl, Udo

论文摘要

物质的拓扑阶段在常规上以赫米尔式系统中的庞大 - 边界对应表示:$ d $ dimensions中的块状拓扑不变,对应于$(d-1)$ - 维度边界状态的数量。通过扩展,高阶拓扑绝缘子揭示了散装边缘的对应关系,因此$ n $ th的订单拓扑阶段具有$(D-n)$ - 尺寸边界状态。非热拓制系统的出现为非富甲皮肤效应(NHSE)的出现提供了新的启示,并在开放边界条件下具有大量边界模式。尽管如此,高阶NHSE仍然在很大程度上尚未开发,尤其是在实验中。我们引入了一种无监督的方法 - 物理图形的机器学习(PGIML),以增强具有有限域知识的机器学习能力。通过PGIML,我们在二维非荷马式甲板电路中实验证明了二阶NHSE。该电路的入学光谱表现出大量的角皮肤模式和光谱流向边界条件的极端灵敏度。在二阶NHSE中,违反常规散装的对应关系意味着,在较高维度的非官方系统中,拓扑结构理论的修改是不可避免的。

Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems: The topological invariant of the bulk in $d$ dimensions corresponds to the number of $(d-1)$-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that $n$-th order topological phases feature $(d-n)$-dimensional boundary states. The advent of non-Hermitian topological systems sheds new light on the emergence of the non-Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher-order NHSE remains largely unexplored, particularly in the experiment. We introduce an unsupervised approach -- physics-graph-informed machine learning (PGIML) -- to enhance the data mining ability of machine learning with limited domain knowledge. Through PGIML, we experimentally demonstrate the second-order NHSE in a two-dimensional non-Hermitian topolectrical circuit. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk-boundary correspondence in the second-order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non-Hermitian systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源