论文标题

迈向深度学习驱动的IVF:形态学参数预测的大型公共基准

Towards deep learning-powered IVF: A large public benchmark for morphokinetic parameter prediction

论文作者

Gomez, Tristan, Feyeux, Magalie, Normand, Nicolas, David, Laurent, Paul-Gilloteaux, Perrine, Fréour, Thomas, Mouchère, Harold

论文摘要

基于人工智能(AI)解决方案(IVF)的解决方案的重要局限性是缺乏训练和评估深度学习模型(DL)模型的公共参考基准。在这项工作中,我们描述了704个开发胚胎的视频的完全注释的数据集,总计337K图像。我们将Resnet,LSTM和Resnet-3D架构应用于我们的数据集,并证明它们表现出色的算法方法可以自动注释阶段开发阶段。总的来说,我们提出了第一个公共基准,该基准将使社区能够评估形态学模型。这是迈向深度学习驱动的IVF的第一步。值得注意的是,我们提出了具有16个不同发育阶段的高度详细注释,包括早期细胞分裂阶段,但也有晚期细胞分裂,摩托后的阶段和非常早期的阶段,这些阶段从未使用过。我们假设这种原始方法将有助于通过胚胎开发的延时视频提高深度学习方法的整体性能,最终使临床成功率提高的不育患者受益(代码和数据可在https://gitlab.univ-nantes.fr/e14444069x/bench_mk_mk_pred.git.git.git.fr/e14444069x/e14444069x/

An important limitation to the development of Artificial Intelligence (AI)-based solutions for In Vitro Fertilization (IVF) is the absence of a public reference benchmark to train and evaluate deep learning (DL) models. In this work, we describe a fully annotated dataset of 704 videos of developing embryos, for a total of 337k images. We applied ResNet, LSTM, and ResNet-3D architectures to our dataset and demonstrate that they overperform algorithmic approaches to automatically annotate stage development phases. Altogether, we propose the first public benchmark that will allow the community to evaluate morphokinetic models. This is the first step towards deep learning-powered IVF. Of note, we propose highly detailed annotations with 16 different development phases, including early cell division phases, but also late cell divisions, phases after morulation, and very early phases, which have never been used before. We postulate that this original approach will help improve the overall performance of deep learning approaches on time-lapse videos of embryo development, ultimately benefiting infertile patients with improved clinical success rates (Code and data are available at https://gitlab.univ-nantes.fr/E144069X/bench_mk_pred.git).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源