论文标题
用于学习统一转换的最佳量子数据集
Optimal quantum dataset for learning a unitary transformation
论文作者
论文摘要
统一转换制定了量子状态的时间演变。如何有效地学习统一转换是量子机学习中的一个基本问题。最自然和领先的策略是训练基于量子数据集的量子机学习模型。尽管更多培训数据的存在会导致更好的模型,但使用过多的数据会降低培训的效率。在这项工作中,我们解决了有关准确学习单一转换的足够量子数据集的最小尺寸的问题,从而揭示了量子数据的功率和限制。首先,我们证明,具有纯状态的数据集的最小尺寸为$ 2^n $,用于学习$ n $ qubit的单一转换。为了充分探索量子数据的能力,我们引入了一个实用的量子数据集,该数据集由$ n+1 $基本张量产品状态状态组成,足以进行精确培训。主要思想是简化利用去耦的结构,从而导致用纯状态的数据集大小的指数改进。此外,我们表明,具有混合状态的量子数据集的大小可以减少为常数,从而产生一个最佳的量子数据集来学习单一。我们在Oracle编译和哈密顿模拟中展示了结果的应用。值得注意的是,要准确模拟一个3 Q量的一维近邻居海森伯格型号,我们的电路仅使用$ 96 $基本的量子门,这是由Trotter-Suzuki产品公式构建的电路中的$ 4080 $ GATES。
Unitary transformations formulate the time evolution of quantum states. How to learn a unitary transformation efficiently is a fundamental problem in quantum machine learning. The most natural and leading strategy is to train a quantum machine learning model based on a quantum dataset. Although the presence of more training data results in better models, using too much data reduces the efficiency of training. In this work, we solve the problem on the minimum size of sufficient quantum datasets for learning a unitary transformation exactly, which reveals the power and limitation of quantum data. First, we prove that the minimum size of a dataset with pure states is $2^n$ for learning an $n$-qubit unitary transformation. To fully explore the capability of quantum data, we introduce a practical quantum dataset consisting of $n+1$ elementary tensor product states that are sufficient for exact training. The main idea is to simplify the structure utilizing decoupling, which leads to an exponential improvement in the size of the datasets with pure states. Furthermore, we show that the size of the quantum dataset with mixed states can be reduced to a constant, which yields an optimal quantum dataset for learning a unitary. We showcase the applications of our results in oracle compiling and Hamiltonian simulation. Notably, to accurately simulate a 3-qubit one-dimensional nearest-neighbor Heisenberg model, our circuit only uses $96$ elementary quantum gates, which is significantly less than $4080$ gates in the circuit constructed by the Trotter-Suzuki product formula.