论文标题

基于方差的灵敏度分析:寻求更好的估计器和探索性之间的设计

Variance-based sensitivity analysis: The quest for better estimators and designs between explorativity and economy

论文作者

Piano, Samuele Lo, Ferretti, Federico, Puy, Arnald, Albrecht, Daniel, Saltelli, Andrea

论文摘要

基于方差的灵敏度指数已确立了自己作为模型输出灵敏度分析的从业者的参考。基于方差的灵敏度分析通常会产生一阶灵敏度索引$ s_j $和所谓的总效应灵敏度指数$ t_j $,用于分析中数学模型的不确定因素。 分析的成本取决于获得估计值稳定和准确值所需的模型评估数量。虽然可用于$ S_J $的有效估计过程,但对于$ t_j $,此可用性较少。在估计这些指标时,可以使用基于样本的方法,其计算成本取决于因素的数量,或者基于元模型/模拟器的使用方法。 目前的工作着重于$ T_J $的基于样本的估计程序,并测试了不同的途径,以对现有最佳实践实现算法的改进。为了改善输入因素(设计)和计算指数(估算器)公式的探索,我们根据经济和探索性概念提出策略。然后,我们讨论几个现有的估计器在这些特征上的执行方式。 我们得出的结论是:a)基于使用多个矩阵来增强经济的基于样本的方法,使用较少的矩阵的设计优于设计,但具有更好的探索性; b)在后者中,不对称设计执行具有纠正术语的最佳和优于对称的设计; c)改善现有的最佳实践充满了困难; D)改善结果是以引入额外的设计参数为代价的。

Variance-based sensitivity indices have established themselves as a reference among practitioners of sensitivity analysis of model outputs. A variance-based sensitivity analysis typically produces the first-order sensitivity indices $S_j$ and the so-called total-effect sensitivity indices $T_j$ for the uncertain factors of the mathematical model under analysis. The cost of the analysis depends upon the number of model evaluations needed to obtain stable and accurate values of the estimates. While efficient estimation procedures are available for $S_j$, this availability is less the case for $T_j$. When estimating these indices, one can either use a sample-based approach whose computational cost depends on the number of factors or use approaches based on meta modelling/emulators. The present work focuses on sample-based estimation procedures for $T_j$ and tests different avenues to achieve an algorithmic improvement over the existing best practices. To improve the exploration of the space of the input factors (design) and the formula to compute the indices (estimator), we propose strategies based on the concepts of economy and explorativity. We then discuss how several existing estimators perform along these characteristics. We conclude that: a) sample-based approaches based on the use of multiple matrices to enhance the economy are outperformed by designs using fewer matrices but with better explorativity; b) among the latter, asymmetric designs perform the best and outperform symmetric designs having corrective terms for spurious correlations; c) improving on the existing best practices is fraught with difficulties; and d) ameliorating the results comes at the cost of introducing extra design parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源