论文标题

自适应判别正规化用于视觉分类

Adaptive Discriminative Regularization for Visual Classification

论文作者

Zhao, Qingsong, Wang, Yi, Dou, Shuguang, Gong, Chen, Wang, Yin, Zhao, Cairong

论文摘要

如何改善判别特征学习是分类的核心。现有作品是通过明确提高类间的可分离性和阶层内相似性来解决此问题的,无论是通过构建正面和负面的对比度学习还是负面的学习,还是在分离边缘分离的阶级。这些方法不会利用不同类别之间的相似性,因为它们遵守I.I.D。数据中的假设。在本文中,我们采用了实际的数据分布设置,某些类别由于其外观或概念而共享语义重叠。关于这一假设,我们提出了一种新颖的正则化,以改善歧视性学习。我们首先根据其语义相邻的类别校准一个样本的估计最高可能性,然后通过施加适应性指数罚款来鼓励总体可能性预测是确定性的。由于所提出的方法的梯度与预测可能性的不确定性大致成正比,因此我们将其命名为自适应判别正则化(ADR),并接受了分类中标准的交叉熵损失。广泛的实验表明,它可以在各种视觉分类任务(超过10个基准)中产生一致和非平凡的性能改善。此外,我们发现长尾且嘈杂的标签数据分布是可靠的。它的灵活设计使其与主流分类架构和损失的兼容性。

How to improve discriminative feature learning is central in classification. Existing works address this problem by explicitly increasing inter-class separability and intra-class similarity, whether by constructing positive and negative pairs for contrastive learning or posing tighter class separating margins. These methods do not exploit the similarity between different classes as they adhere to i.i.d. assumption in data. In this paper, we embrace the real-world data distribution setting that some classes share semantic overlaps due to their similar appearances or concepts. Regarding this hypothesis, we propose a novel regularization to improve discriminative learning. We first calibrate the estimated highest likelihood of one sample based on its semantically neighboring classes, then encourage the overall likelihood predictions to be deterministic by imposing an adaptive exponential penalty. As the gradient of the proposed method is roughly proportional to the uncertainty of the predicted likelihoods, we name it adaptive discriminative regularization (ADR), trained along with a standard cross entropy loss in classification. Extensive experiments demonstrate that it can yield consistent and non-trivial performance improvements in a variety of visual classification tasks (over 10 benchmarks). Furthermore, we find it is robust to long-tailed and noisy label data distribution. Its flexible design enables its compatibility with mainstream classification architectures and losses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源