论文标题

多源MEC系统中分布式DNN计算的顺序卸载

Sequential Offloading for Distributed DNN Computation in Multiuser MEC Systems

论文作者

Wang, Feng, Cai, Songfu, Lau, Vincent K. N.

论文摘要

本文研究了多源移动边缘计算(MEC)系统的连续任务卸载问题。我们考虑了一种动态优化方法,该方法包含无线通道波动和随机的深神经网络(DNN)任务到达无限的地平线。具体来说,我们介绍了本地CPU工作负载队列(WD-QSI)和MEC服务器工作负载队列(MEC-QSI),以对每个WD和MEC服务器的DNN任务的动态工作负载进行建模。根据瞬时通道条件(以捕获传输机会)以及瞬时的WD-QSI和MEC-QSI(以捕获任务的动态紧迫性),可以动态确定每个WD局部DNN任务的发射功率和分配。关节优化可以作为沿阵行的马尔可夫决策过程(MDP)配制,其中最佳条件的特征是集中式钟形方程。但是,由于维度的诅咒以及对全球状态信息的知识的要求,MDP的蛮力解决方案是不可行的。为了克服这些问题,我们首先将MDP分解为多个较低维的子MDP,它们都可以与WD或MEC服务器关联。接下来,我们进一步开发了一个参数在线Q学习算法,以便每个子MDP在其关联的WD或MEC服务器上本地求解。所提出的解决方案完全分散,因为可以根据局部通道状态信息(CSI)和WD局部的WD-QSI确定顺序卸载和DNN任务分配的发射功率。此外,不需要对DNN任务到达的分布或MEC服务器的频道统计信息进行先验知识。

This paper studies a sequential task offloading problem for a multiuser mobile edge computing (MEC) system. We consider a dynamic optimization approach, which embraces wireless channel fluctuations and random deep neural network (DNN) task arrivals over an infinite horizon. Specifically, we introduce a local CPU workload queue (WD-QSI) and an MEC server workload queue (MEC-QSI) to model the dynamic workload of DNN tasks at each WD and the MEC server, respectively. The transmit power and the partitioning of the local DNN task at each WD are dynamically determined based on the instantaneous channel conditions (to capture the transmission opportunities) and the instantaneous WD-QSI and MEC-QSI (to capture the dynamic urgency of the tasks) to minimize the average latency of the DNN tasks. The joint optimization can be formulated as an ergodic Markov decision process (MDP), in which the optimality condition is characterized by a centralized Bellman equation. However, the brute force solution of the MDP is not viable due to the curse of dimensionality as well as the requirement for knowledge of the global state information. To overcome these issues, we first decompose the MDP into multiple lower dimensional sub-MDPs, each of which can be associated with a WD or the MEC server. Next, we further develop a parametric online Q-learning algorithm, so that each sub-MDP is solved locally at its associated WD or the MEC server. The proposed solution is completely decentralized in the sense that the transmit power for sequential offloading and the DNN task partitioning can be determined based on the local channel state information (CSI) and the local WD-QSI at the WD only. Additionally, no prior knowledge of the distribution of the DNN task arrivals or the channel statistics will be needed for the MEC server.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源