论文标题
在多任务感知中检测对抗性扰动
Detecting Adversarial Perturbations in Multi-Task Perception
论文作者
论文摘要
尽管深度神经网络(DNN)在环境感知任务上取得了令人印象深刻的表现,但它们对对抗性扰动的敏感性限制了它们在实际应用中的使用。在本文中,我们(i)提出了一种基于对复杂视力任务的多任务感知(即深度估计和语义分割)的新型对抗扰动检测方案。具体而言,通过在输入图像的提取边缘,深度输出和分割输出之间的不一致之处检测到对抗性扰动。为了进一步提高这一技术,我们(ii)在所有三种方式之间发展了新颖的边缘一致性损失,从而提高了它们的初始一致性,从而支持我们的检测方案。我们通过采用各种已知攻击和图像噪声来验证检测方案的有效性。此外,我们(iii)产生了多任务对抗攻击,旨在欺骗这两个任务以及我们的检测方案。对城市景观和Kitti数据集的实验评估表明,在假设5%的假阳性率的假设下,最高100%的图像被正确检测为对抗性扰动,具体取决于扰动的强度。代码可在https://github.com/ifnspaml/advattackdet上找到。 https://youtu.be/kka6goywmh4的简短视频可提供定性结果。
While deep neural networks (DNNs) achieve impressive performance on environment perception tasks, their sensitivity to adversarial perturbations limits their use in practical applications. In this paper, we (i) propose a novel adversarial perturbation detection scheme based on multi-task perception of complex vision tasks (i.e., depth estimation and semantic segmentation). Specifically, adversarial perturbations are detected by inconsistencies between extracted edges of the input image, the depth output, and the segmentation output. To further improve this technique, we (ii) develop a novel edge consistency loss between all three modalities, thereby improving their initial consistency which in turn supports our detection scheme. We verify our detection scheme's effectiveness by employing various known attacks and image noises. In addition, we (iii) develop a multi-task adversarial attack, aiming at fooling both tasks as well as our detection scheme. Experimental evaluation on the Cityscapes and KITTI datasets shows that under an assumption of a 5% false positive rate up to 100% of images are correctly detected as adversarially perturbed, depending on the strength of the perturbation. Code is available at https://github.com/ifnspaml/AdvAttackDet. A short video at https://youtu.be/KKa6gOyWmH4 provides qualitative results.