论文标题
由于拥塞信息提供的避免交通拥堵的影响,在内源性星网拓扑上优化代理动力学
Effect of congestion avoidance due to congestion information provision on optimizing agent dynamics on an endogenous star network topology
论文作者
论文摘要
广泛认可了基本研究对网络拓扑的重要性。这项研究旨在阐明避免剂量的避免交通拥堵的效果,并鉴于在网络拓扑中优化流量的拥堵信息。我们研究了一个星形拓扑的随机交通网络,其中中央节点连接到具有不同偏好的孤立次级节点。中央节点上的每个代理通过根据次级节点的拥塞率参考偏好率来选择次要节点。我们检查了两种情况:1)每个代理可以反复访问中央和次要节点。 2)每个代理只能访问每个辅助节点一次。对于1),我们调查了固定状态下代理分布的均匀性,对于2),我们测量了所有访问所有节点的代理的旅行时间。当代理反复访问中央和其他节点时,已经发现代理分布的均匀性显示出三种类型的非线性依赖性对节点的增加。我们发现,多元统计数据很好地描述了这些特征依赖性,这表明通过避免拥塞和相互转介到拥塞信息引起的网络使用均衡之间的平衡之间的平衡决定了统一性。我们发现,避免拥堵的避免时间是线性的,尽管参考拥堵信息程度,但与节点的数量成倍增加。因此,我们成功地描述了避免拥塞的优化效果对恒星拓扑中代理的集体动力学的优化效果。我们的发现在网络科学的许多领域很有用。
The importance of fundamental research on network topologies is widely acknowledged. This study aims to elucidate the effect of congestion avoidance of agents given congestion information on optimizing traffic in a network topology. We investigated stochastic traffic networks in a star topology with a central node connected to isolated secondary nodes with different preferences. Each agent at the central node selects a secondary node by referring to the declining preferences based on the congestion rate of the secondary nodes. We examined two scenarios: 1) Each agent can repeatedly visit the central and secondary nodes. 2) Each agent can access each secondary node only once. For 1), we investigated the uniformity of the agent distribution in a stationary state, and for 2), we measured the travel time for all agents visiting all nodes. When agents repeatedly visit central and other nodes, the uniformity of agent distribution has been found to show three types of nonlinear dependence on the increase in nodes. We found that multivariate statistics describe these characteristic dependences well, suggesting that the balance between the equalization of network usage by avoiding congestion and the covariance caused by mutual referral to congestion information determines the uniformity. We discovered that congestion-avoidance linearizes the travel time, which increases exponentially with the number of nodes, notwithstanding the degree of reference to the congestion information. Consequently, we successfully described the optimization effect of congestion-avoidance on the collective dynamics of agents in star topologies. Our findings are useful in many areas of network science.