论文标题

氨,二氧化碳和2152 cm $^{ - 1} $ co带的非检测

Ammonia, carbon dioxide and the non-detection of the 2152 cm$^{-1}$ CO band

论文作者

He, Jiao, Perotti, Giulia, Emtiaz, Shahnewaz M., Toriello, Francis E., Boogert, Adwin, Henning, Thomas, Vidali, Gianfranco

论文摘要

CO是星际粉尘谷物上最丰富的冰分之一。当它与无定形固体水(ASW)混合或位于其表面上时,在实验室测量中始终存在2152 cm $^{ - 1} $的CO的吸收带。该频谱特征归因于CO与ASW中悬挂的OH键(DOH)的相互作用。但是,星际冰的观察光谱不存在该带。这就提出了一个问题,即CO是在ASW顶部形成相对纯净的层还是与ASW密切接触,而不是通过悬空键。我们旨在确定将NH $ _3 $还是将Co $ _2 $纳入ASW的将DOH固定,从而减少2152 cm $^{ - 1} $ band。我们进行了实验室实验,以模拟冰盖的分层结构,也就是说,我们在1)纯ASW上种植了Co Ice,2)NH $ _3 $:H $ _2 $ _2 $ o = 10:100混合冰,3)CO $ _2 $:H $ _2 $ _2 $ o = 20:100混合冰。测量红外光谱以量化2152 cm $^{ - 1} $ band的强度。此外,进行了第二组实验,以确定NH $ _3 $在ASW中的掺入如何影响DOH频段。我们发现,退火冰减少了2152 cm $^{ - 1} $ band,而NH $ _3 $阻止了ASW表面上的DOH,因此比CO $ _2 $更有效地降低了2152 cm $^{ - 1} $ band。我们建议,NH $ _3 $和CO $ _2 $之间的这种差异可以归因于来宾分子的极性(NH $ _3 $是极性物种,而Co $ $ _2 $是Apolar)。极性意味着在氨原子和DOH之间形成H键是无障碍的反应。我们还确定了冰混合物的孔隙表面积,这是退火温度的函数,发现2152 cm $^{ - 1} $ band的非探测器不一定排除了多孔冰壳的可能性。

CO is one of the most abundant ice components on interstellar dust grains. When it is mixed with amorphous solid water (ASW) or located on its surface, an absorption band of CO at 2152 cm$^{-1}$ is always present in laboratory measurements. This spectral feature is attributed to the interaction of CO with dangling-OH bonds (dOH) in ASW. However, this band is absent in observational spectra of interstellar ices. This raises the question whether CO forms a relatively pure layer on top of ASW or is in close contact with ASW, but not via dangling bonds. We aim to determine whether the incorporation of NH$_3$ or CO$_2$ into ASW blocks the dOH and therefore reduces the 2152 cm$^{-1}$ band. We performed laboratory experiments to simulate the layered structure of the ice mantle, that is, we grew CO ice on top of 1) pure ASW, 2) NH$_3$:H$_2$O=10:100 mixed ice, and 3) CO$_2$:H$_2$O=20:100 mixed ice. Infrared spectra were measured to quantify the strength of the 2152 cm$^{-1}$ band. In addition, a second set of experiments were performed to determine how the incorporation of NH$_3$ into ASW affects the dOH band. We found that annealing the ice reduces the 2152 cm$^{-1}$ band and that NH$_3$ blocks the dOH on ASW surface and therefore reduces the 2152 cm$^{-1}$ band more effectively than CO$_2$. We suggest that this difference between NH$_3$ and CO$_2$ can be ascribed to the polarity of the guest molecule (NH$_3$ is a polar species, whereas CO$_2$ is apolar). The polarity implies that the formation of an H-bond between the N atom of ammonia and the dOH is a barrier-less reaction. We also determined the pore surface area of the ice mixtures as a function of the annealing temperature, and found that the nondetection of 2152 cm$^{-1}$ band does not necessarily exclude the possibility of a porous ice mantle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源