论文标题
遮挡感知的成本构造函数用于光场深度估计
Occlusion-Aware Cost Constructor for Light Field Depth Estimation
论文作者
论文摘要
匹配的成本构建是光场(LF)深度估算的关键步骤,但在深度学习时代很少研究。最近基于深度学习的LF深度估计方法通过使用一系列预定义的偏移序列地移动每个子孔径(SAI)来构建匹配成本,这是复杂且耗时的。在本文中,我们提出了一个简单而快速的成本构造函数,以构建LF深度估算的匹配成本。我们的成本构造函数由一系列具有专门设计的扩张速率的卷积组成。通过将我们的成本构造函数应用于SAI阵列,可以集成预定差异的像素,并且可以在不使用任何移动操作的情况下构建匹配的成本。更重要的是,提出的成本构造函数是遮挡感,可以通过动态调节不同视图的像素来处理遮挡。根据提议的成本构造函数,我们开发了一个深层网络,用于LF深度估计。根据均方误差(MSE),我们的网络在常用的4D LF基准测试中排名第一,并且比其他最先进的方法更快地运行时间。
Matching cost construction is a key step in light field (LF) depth estimation, but was rarely studied in the deep learning era. Recent deep learning-based LF depth estimation methods construct matching cost by sequentially shifting each sub-aperture image (SAI) with a series of predefined offsets, which is complex and time-consuming. In this paper, we propose a simple and fast cost constructor to construct matching cost for LF depth estimation. Our cost constructor is composed by a series of convolutions with specifically designed dilation rates. By applying our cost constructor to SAI arrays, pixels under predefined disparities can be integrated and matching cost can be constructed without using any shifting operation. More importantly, the proposed cost constructor is occlusion-aware and can handle occlusions by dynamically modulating pixels from different views. Based on the proposed cost constructor, we develop a deep network for LF depth estimation. Our network ranks first on the commonly used 4D LF benchmark in terms of the mean square error (MSE), and achieves a faster running time than other state-of-the-art methods.