论文标题

欧几里得准备。 xviii。 NISP光度法

Euclid preparation. XVIII. The NISP photometric system

论文作者

Euclid Collaboration, Schirmer, M., Jahnke, K., Seidel, G., Aussel, H., Bodendorf, C., Grupp, F., Hormuth, F., Wachter, S., Appleton, P. N., Barbier, R., Brinchmann, J., Carrasco, J. M., Castander, F. J., Coupon, J., De Paolis, F., Franco, A., Ganga, K., Hudelot, P., Jullo, E., Lancon, A., Nucita, A. A., Paltani, S., Smadja, G., Venancio, L. M. G., Strafella, F., Weiler, M., Amara, A., Auphan, T., Auricchio, N., Balestra, A., Bender, R., Bonino, D., Branchini, E., Brescia, M., Capobianco, V., Carbone, C., Carretero, J., Casas, R., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Courbin, F., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Ealet, A., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Grazian, A., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hornstrup, A., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kohley, R., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lloro, I., Maciaszek, T., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R., Maurogordato, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Nichol, R. C., Niemi, S. M., Padilla, C., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Poncet, M., Popa, L., Pozzetti, L., Prieto, E., Raison, F., Rhodes, J., Rix, H. -W., Roncarelli, M., Rossetti, E., Saglia, R., Sartoris, B., Scaramella, R., Schneider, P., Secroun, A., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Trifoglio, M., Valentijn, E. A., Valenziano, L., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Andreon, S., Bardelli, S., Boucaud, A., Camera, S., Farinelli, R., Graciá-Carpio, J., Maino, D., Medinaceli, E., Mei, S., Morisset, N., Polenta, G., Renzi, A., Romelli, E., Tenti, M., Vassallo, T., Zacchei, A., Zucca, E., Baccigalupi, C., Balaguera-Antolínez, A., Biviano, A., Blanchard, A., Borgani, S., Bozzo, E., Burigana, C., Cabanac, R., Cappi, A., Carvalho, C. S., Casas, S., Castignani, G., Colodro-Conde, C., Cooray, A. R., Courtois, H. M., Crocce, M., Cuby, J. -G., Davini, S., de la Torre, S., Di Ferdinando, D., Escartin, J. A., Farina, M., Ferreira, P. G., Finelli, F., Fotopoulou, S., Galeotta, S., Garcia-Bellido, J., Gaztanaga, E., George, K., Gozaliasl, G., Hook, I. M., Ilić, S., Kansal, V., Kashlinsky, A., Keihanen, E., Kirkpatrick, C. C., Lindholm, V., Mainetti, G., Maoli, R., Martinelli, M., Martinet, N., Maturi, M., Mauri, N., McCracken, H. J., Metcalf, R. B., Monaco, P., Morgante, G., Nightingale, J., Patrizii, L., Peel, A., Popa, V., Porciani, C., Potter, D., Reimberg, P., Riccio, G., Sánchez, A. G., Sapone, D., Scottez, V., Sefusatti, E., Teyssier, R., Tutusaus, I., Valieri, C., Valiviita, J., Viel, M., Hildebrandt, H.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Euclid will be the first space mission to survey most of the extragalactic sky in the 0.95-2.02 $μ$m range, to a 5$σ$ point-source median depth of 24.4 AB mag. This unique photometric data set will find wide use beyond Euclid's core science. In this paper, we present accurate computations of the Euclid Y_E, J_E and H_E passbands used by the Near-Infrared Spectrometer and Photometer (NISP), and the associated photometric system. We pay particular attention to passband variations in the field of view, accounting among others for spatially variable filter transmission, and variations of the angle of incidence on the filter substrate using optical ray tracing. The response curves' cut-on and cut-off wavelengths - and their variation in the field of view - are determined with 0.8 nm accuracy, essential for the photometric redshift accuracy required by Euclid. After computing the photometric zeropoints in the AB mag system, we present linear transformations from and to common ground-based near-infrared photometric systems, for normal stars, red and brown dwarfs, and galaxies separately. A Python tool to compute accurate magnitudes for arbitrary passbands and spectral energy distributions is provided. We discuss various factors from space weathering to material outgassing that may slowly alter Euclid's spectral response. At the absolute flux scale, the Euclid in-flight calibration program connects the NISP photometric system to Hubble Space Telescope spectrophotometric white dwarf standards; at the relative flux scale, the chromatic evolution of the response is tracked at the milli-mag level. In this way, we establish an accurate photometric system that is fully controlled throughout Euclid's lifetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源