论文标题

部分可观测时空混沌系统的无模型预测

Relative distance matters for one-shot landmark detection

论文作者

Yao, Qingsong, Wang, Jianji, Sun, Yihua, Quan, Quan, Zhu, Heqin, Zhou, S. Kevin

论文摘要

基于对比学习的方法,例如比较检测(CC2D)的级联反应(CC2D),显示了一次性医疗地标检测的巨大潜力。但是,在CC2D中忽略了地标之间的相对距离的重要提示。在本文中,我们通过在训练阶段将CC2D升级为II版,从理论上讲,这是可以鼓励编码器将相对遥远的地标投影到相似性较低的嵌入式。因此,CC2DV2较少检测到远离正确地标的错误点。此外,我们提出了一个开源的,具有里程碑意义的标签数据集,用于测量下肢的生物力学参数,以减轻骨科医生的负担。 CC2DV2的有效性是在ISBI 2015头射片射线照片和我们的新数据集中评估的公共数据集,这些数据集大大优于先进的一流地标检测方法。

Contrastive learning based methods such as cascade comparing to detect (CC2D) have shown great potential for one-shot medical landmark detection. However, the important cue of relative distance between landmarks is ignored in CC2D. In this paper, we upgrade CC2D to version II by incorporating a simple-yet-effective relative distance bias in the training stage, which is theoretically proved to encourage the encoder to project the relatively distant landmarks to the embeddings with low similarities. As consequence, CC2Dv2 is less possible to detect a wrong point far from the correct landmark. Furthermore, we present an open-source, landmark-labeled dataset for the measurement of biomechanical parameters of the lower extremity to alleviate the burden of orthopedic surgeons. The effectiveness of CC2Dv2 is evaluated on the public dataset from the ISBI 2015 Grand-Challenge of cephalometric radiographs and our new dataset, which greatly outperforms the state-of-the-art one-shot landmark detection approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源