论文标题

XXZ AntiferRomagnet中的两种智力难题

The puzzle of bicriticality in the XXZ antiferromagnet

论文作者

Aharony, A., Entin-Wohlman, O.

论文摘要

重量化组理论预测,沿磁场中的XXZ抗fiferromagnet沿易于z轴的磁场具有渐近的四个智力相 - 或在场温度平面中的三个点。实验和蒙特卡洛模拟都没有采用此类相图。取而代之的是,他们找到了两相数字。在这里解决了这种差异:在概括了识别四智度的普遍存在之后,我们在各向同性固定点附近采用了新的重归化组递归关系,从而利用了组理论考虑并在三个维度上使用准确的指数。这些表明,只有在其轨迹朝着波动驱动的一阶转变(以及相关的三重点)流动时,才能理解实验和仿真结果,但仅适用于过度较大的系统尺寸或相关长度,才达到此限制。在跨界区域中,人们期望具有两相图,如确实所观察到的。类似的情况可能解释了具有竞争顺序参数的各种其他相图的模拟和重新归一化组预测之间的令人困惑的差异。

Renormalization-group theory predicts that the XXZ antiferromagnet in a magnetic field along the easy Z-axis has asymptotically either a tetracritical phase-diagram or a triple point in the field-temperature plane. Neither experiments nor Monte Carlo simulations procure such phase diagrams. Instead, they find a bicritical phase-diagram. Here this discrepancy is resolved: after generalizing a ubiquitous condition identifying the tetracritical point, we employ new renormalization-group recursion relations near the isotropic fixed point, exploiting group-theoretical considerations and using accurate exponents at three dimensions. These show that the experiments and simulations results can only be understood if their trajectories flow towards the fluctuation-driven first order transition (and the associated triple point), but reach this limit only for prohibitively large system sizes or correlation lengths. In the crossover region one expects a bicritical phase diagram, as indeed is observed. A similar scenario may explain puzzling discrepancies between simulations and renormalization-group predictions for a variety of other phase diagrams with competing order parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源