论文标题

通用成像调查数据8的通用全能光度红移

All-purpose, all-sky photometric redshifts for the Legacy Imaging Surveys Data Release 8

论文作者

Duncan, Kenneth J.

论文摘要

在本文中,我们介绍了暗能量光谱仪器(DESI)传统成像调查的光度红移(照片 - $ z $),目前是涵盖大多数半乳酸天空的最敏感的光学调查。我们的照片 - $ z $方法论是基于机器学习方法,使用稀疏的高斯工艺加入了高斯混合模型(GMM),允许以纯粹的数据驱动方式分别识别参数空间区域。相同的GMM也用于计算成本敏感的学习权重,以减轻光谱训练样本中的偏见。根据设计,这种方法旨在为广泛调查中存在的所有参数空间的所有部分产生可靠且无偏的预测。与以前使用相同基础光度法的文献估算值相比,我们的照片 - $ z $ S的偏见明显较小,并且在$ z> 1 $时更加准确,精确度的损失可以忽略不计,或者在$ z <1 $的情况下可靠性的星系可靠性。我们的照片 - $ z $估计值为家长样本中罕见的高价值种群提供准确的预测,包括最高红移($ z> 6 $)的光学选择的类星体,以及X射线或无线电连续体选定的人群,遍布广泛的磁通范围(密度)和红移。衍生图片 - $ z $的估计估计全部遗留成像调查数据发行8,此工作中提供的目录照片 - $ z $估计估计为$ \ gtrsim9 \ times10^{8} $ galaxies ys $ \ sim \ sim 19 \,sim 19 \,400 \,400 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ s $ 7 $ 7有史以来最广泛的红移估计样本。

In this paper we present photometric redshift (photo-$z$) estimates for the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys, currently the most sensitive optical survey covering the majority of the extra-galactic sky. Our photo-$z$ methodology is based on a machine-learning approach, using sparse Gaussian processes augmented with Gaussian mixture models (GMMs) that allow regions of parameter space to be identified and trained separately in a purely data-driven way. The same GMMs are also used to calculate cost-sensitive learning weights that mitigate biases in the spectroscopic training sample. By design, this approach aims to produce reliable and unbiased predictions for all parts of the parameter space present in wide area surveys. Compared to previous literature estimates using the same underlying photometry, our photo-$z$s are significantly less biased and more accurate at $z > 1$, with negligible loss in precision or reliability for resolved galaxies at $z < 1$. Our photo-$z$ estimates offer accurate predictions for rare high-value populations within the parent sample, including optically selected quasars at the highest redshifts ($z > 6$), as well as X-ray or radio continuum selected populations across a broad range of flux (densities) and redshift. Deriving photo-$z$ estimates for the full Legacy Imaging Surveys Data Release 8, the catalogues provided in this work offer photo-$z$ estimates predicted to be high quality for $\gtrsim9\times10^{8}$ galaxies over $\sim 19\,400\,\text{deg}^{2}$ and spanning $0 < z \lesssim 7$, offering one of the most extensive samples of redshift estimates ever produced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源