论文标题

第三方IP内核中硬件木马检测的对比度图卷积网络

Contrastive Graph Convolutional Networks for Hardware Trojan Detection in Third Party IP Cores

论文作者

Muralidhar, Nikhil, Zubair, Abdullah, Weidler, Nathanael, Gerdes, Ryan, Ramakrishnan, Naren

论文摘要

广泛的第三方知识产权(3PIP)核心的可用性使集成电路(IC)设计师能够专注于设计ASIC/SOC中的高级功能。 IC的大规模扩散带来了越来越多的不良行为者,他们试图出于各种邪恶的原因来利用这些电路。这并不奇怪,因为综合电路会影响社会的各个方面。因此,恶意逻辑(硬件木马,ht)被不受信任的供应商秘密注入IC设计中使用的3PIP核心是一个永远存在的威胁。在本文中,我们探讨了用于识别包含无金模型合成IP内核的设计中基于触发的HT的方法。具体而言,我们通过检测纯粹基于从供应商获取的网表中嵌入的IC中嵌入的触发器来开发方法来检测硬件木马。我们提出了Gate-Net,这是一种基于使用监督的对比度学习训练的图形跨跨网络(GCN)的深度学习模型,用于标记仅使用相应的NetList的随机插入触发器的设计。我们提出的架构比最先进的学习模型取得了重大改进,为组合触发器的检测性能提高了46.99%,在各种电路类型中,顺序触发器的检测性能提高了21.91%。通过严格的实验,定性和定量性能评估,我们证明了栅极网络的有效性以及对HT检测的栅极网络的监督对比训练。

The availability of wide-ranging third-party intellectual property (3PIP) cores enables integrated circuit (IC) designers to focus on designing high-level features in ASICs/SoCs. The massive proliferation of ICs brings with it an increased number of bad actors seeking to exploit those circuits for various nefarious reasons. This is not surprising as integrated circuits affect every aspect of society. Thus, malicious logic (Hardware Trojans, HT) being surreptitiously injected by untrusted vendors into 3PIP cores used in IC design is an ever present threat. In this paper, we explore methods for identification of trigger-based HT in designs containing synthesizable IP cores without a golden model. Specifically, we develop methods to detect hardware trojans by detecting triggers embedded in ICs purely based on netlists acquired from the vendor. We propose GATE-Net, a deep learning model based on graph-convolutional networks (GCN) trained using supervised contrastive learning, for flagging designs containing randomly-inserted triggers using only the corresponding netlist. Our proposed architecture achieves significant improvements over state-of-the-art learning models yielding an average 46.99% improvement in detection performance for combinatorial triggers and 21.91% improvement for sequential triggers across a variety of circuit types. Through rigorous experimentation, qualitative and quantitative performance evaluations, we demonstrate effectiveness of GATE-Net and the supervised contrastive training of GATE-Net for HT detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源