论文标题

使用MMSE模型的数据增强授权的多源MIMO神经编码

Data Augmentation Empowered Neural Precoding for Multiuser MIMO with MMSE Model

论文作者

Zhang, Shaoqing, Xu, Jindan, Xu, Wei, NingWang, Ng, Derrick Wing Kwan, You, Xiaohu

论文摘要

对多源多输入多输出(MU-MIMO)系统进行了广泛研究,研究了研究深度学习方法的预编码设计。但是,传统的神经预编码设计应用基于黑盒的神经网络,这些神经网络较不容易解释。在本文中,我们提出了一种基于深度学习的预编码方法,基于神经预编码网络的可解释设计,即IPNET。特别是,IPNET模拟了经典的最小于点误差(MMSE)预编码,并近似于神经网络体系结构设计中的矩阵反转。具体而言,所提出的IPNET由模型驱动的组件网络组成,负责增强输入通道状态信息(CSI)和数据驱动的子网络,负责从该增强的CSI进行预编码的计算。后一个数据驱动的模块被明确解释为MMSE预码器的无监督学习者。仿真结果表明,通过利用增强的CSI,所提出的IPNET比现有的黑盒设计可实现明显的性能增长,并且还具有针对CSI不匹配的可推广性。

Precoding design exploiting deep learning methods has been widely studied for multiuser multiple-input multiple-output (MU-MIMO) systems. However, conventional neural precoding design applies black-box-based neural networks which are less interpretable. In this paper, we propose a deep learning-based precoding method based on an interpretable design of a neural precoding network, namely iPNet. In particular, the iPNet mimics the classic minimum mean-squared error (MMSE) precoding and approximates the matrix inversion in the design of the neural network architecture. Specifically, the proposed iPNet consists of a model-driven component network, responsible for augmenting the input channel state information (CSI), and a data-driven sub-network, responsible for precoding calculation from this augmented CSI. The latter data-driven module is explicitly interpreted as an unsupervised learner of the MMSE precoder. Simulation results show that by exploiting the augmented CSI, the proposed iPNet achieves noticeable performance gain over existing black-box designs and also exhibits enhanced generalizability against CSI mismatches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源