论文标题
使用双眼相似性匹配和三维轮廓优化的混合现实深度轮廓遮挡
Mixed Reality Depth Contour Occlusion Using Binocular Similarity Matching and Three-dimensional Contour Optimisation
论文作者
论文摘要
混合现实应用程序通常需要虚拟对象,这些对象部分被真实对象遮住。但是,先前的研究和商业产品在性能和效率方面有局限性。为了应对这些挑战,我们提出了一种新颖的深度轮廓闭塞(DCO)算法。所提出的方法基于轮廓闭塞和双眼立体视觉装置的灵敏度。在此方法中,将深度轮廓图与从两阶段自适应滤波器区域立体声匹配算法获得的稀疏深度图组合在一起,以及通过数字图像稳定光流量方法提取的对象的深度轮廓信息。我们还提出了一个具有三个约束的二次优化模型,以生成用于高质量实用式遮挡的深度轮廓的准确密集图。 GPU加速了整个过程。为了评估该算法的有效性,我们证明了DCO算法执行的每个阶段的时间降低统计分析。为了验证真实闭塞效应的可靠性,我们对单方面,封闭和复杂的闭塞进行了实验分析。随后,我们将其与遮挡方法进行比较,而无需二次优化。通过我们用于实时DCO的GPU实施,评估表明,应用呈现的DCO算法可以提高实时性能和真实闭塞的视觉质量。
Mixed reality applications often require virtual objects that are partly occluded by real objects. However, previous research and commercial products have limitations in terms of performance and efficiency. To address these challenges, we propose a novel depth contour occlusion (DCO) algorithm. The proposed method is based on the sensitivity of contour occlusion and a binocular stereoscopic vision device. In this method, a depth contour map is combined with a sparse depth map obtained from a two-stage adaptive filter area stereo matching algorithm and the depth contour information of the objects extracted by a digital image stabilisation optical flow method. We also propose a quadratic optimisation model with three constraints to generate an accurate dense map of the depth contour for high-quality real-virtual occlusion. The whole process is accelerated by GPU. To evaluate the effectiveness of the algorithm, we demonstrate a time con-sumption statistical analysis for each stage of the DCO algorithm execution. To verify the relia-bility of the real-virtual occlusion effect, we conduct an experimental analysis on single-sided, enclosed, and complex occlusions; subsequently, we compare it with the occlusion method without quadratic optimisation. With our GPU implementation for real-time DCO, the evaluation indicates that applying the presented DCO algorithm can enhance the real-time performance and the visual quality of real-virtual occlusion.