论文标题
Boostmis:使用自适应伪标签和信息性的主动注释来增强医学图像半监督学习
BoostMIS: Boosting Medical Image Semi-supervised Learning with Adaptive Pseudo Labeling and Informative Active Annotation
论文作者
论文摘要
在本文中,我们提出了一个名为BOOSTMIS的新型半监督学习(SSL)框架,该框架结合了自适应伪标签和信息丰富的主动注释,以释放医疗图像SSL模型的潜力:(1)Boostmis可以适应无标准的学习状态的群集假设和无名数据的群集假设和一致性。该策略可以自适应地生成一击“硬”标签,这些标签从任务模型预测转换为更好的任务模型培训。 (2)对于未选择的未标记图像,我们介绍了一种主动学习(AL)算法,以通过利用虚拟对抗扰动和模型的密度意识到的熵来找到信息的样本作为候选注释候选。这些信息丰富的候选人随后被送入下一个训练周期,以获得更好的SSL标签传播。值得注意的是,自适应伪标记和信息丰富的主动注释形成了一种学习闭环,它们是相互协作的,可增强医疗图像SSL。为了验证所提出方法的有效性,我们收集了一个转移性硬膜外脊髓压缩(MESCC)数据集,该数据集旨在优化MESCC诊断和分类,以改善专家的转诊和治疗。我们对MESCC和另一个公共数据集Covidx进行了广泛的实验研究。实验结果验证了我们框架对不同医学图像数据集的有效性和普遍性,对各种最先进的方法有了显着改善。
In this paper, we propose a novel semi-supervised learning (SSL) framework named BoostMIS that combines adaptive pseudo labeling and informative active annotation to unleash the potential of medical image SSL models: (1) BoostMIS can adaptively leverage the cluster assumption and consistency regularization of the unlabeled data according to the current learning status. This strategy can adaptively generate one-hot "hard" labels converted from task model predictions for better task model training. (2) For the unselected unlabeled images with low confidence, we introduce an Active learning (AL) algorithm to find the informative samples as the annotation candidates by exploiting virtual adversarial perturbation and model's density-aware entropy. These informative candidates are subsequently fed into the next training cycle for better SSL label propagation. Notably, the adaptive pseudo-labeling and informative active annotation form a learning closed-loop that are mutually collaborative to boost medical image SSL. To verify the effectiveness of the proposed method, we collected a metastatic epidural spinal cord compression (MESCC) dataset that aims to optimize MESCC diagnosis and classification for improved specialist referral and treatment. We conducted an extensive experimental study of BoostMIS on MESCC and another public dataset COVIDx. The experimental results verify our framework's effectiveness and generalisability for different medical image datasets with a significant improvement over various state-of-the-art methods.