论文标题

照片离子化引发了差异超快电荷迁移:分子对称和互变体形式的影响

Photo-ionization Initiated Differential Ultrafast Charge Migration: Impact of Molecular Symmetries and Tautomeric Forms

论文作者

Chordiya, K., Despré, V., Nagyillés, B., Zeller, F., Diveki, Z., Kuleff, A. I., Kahaly, M. U.

论文摘要

光电发诱导的超快电子动力学被认为是与分子解离相关的较慢的核动力学的先驱。在这里,使用Ab Initio Multilectron波包传播方法,我们研究了由原型分子的不同互变异符的外部价值轨道的电离触发的总体多电子动力学,该动力学的原始轨道轨道的电离具有多个对称元素。从最初创建每个系统的平均孔密度的时间演变开始,我们就确定了互变异体中明显不同的电荷动态响应。我们观察到,Keto形式显示了电荷迁移方向,远离与互变异氢键合的氮,而在烯醇中远离与互变异型氢键合的氧气。另外,与“对称性”相比,不同对称性的分子轨道电离后的动力学表明,“轨道”显示出快速,高度取消的电荷。这些观察表明,不同的依次构体对XUV电离的反应不同,并且可能对随后的不同碎片进行了解释。尽管允许探测和重新构建的范围。简单的,典型的生物相关分子,它揭示了分子对称性和互变异分解在电离触发的电荷迁移中的明确作用,该电荷电荷迁移控制了许多超快的物理,化学和生物学过程,从而使互变异分解形式成为所需的电荷迁移的有希望的分子设计工具。

Photo-ionization induced ultrafast electron dynamics is considered as a precursor to the slower nuclear dynamics associated with molecular dissociation. Here, using ab initio multielectron wave-packet propagation method, we study the overall many-electron dynamics, triggered by the ionization of outer-valence orbitals of different tautomers of a prototype molecule with more than one symmetry element. From the time evolution of the initially created averaged hole density of each system, we identify distinctly different charge dynamics response in the tautomers. We observe that keto form shows charge migration direction away from the nitrogen bonded with tautomeric hydrogen, while in enol - away from oxygen bonded to tautomeric hydrogen. Additionally, the dynamics following ionization of molecular orbitals of different symmetry reveal that a' orbitals show fast and highly delocalized charge in comparison to a" symmetry. These observations indicate why different tautomers respond differently to an XUV ionization, and might explain the subsequent different fragmentation pathways. An experimental schematics allowing detection and reconstruction of such charge dynamics is also proposed. Although the present study uses a simple, prototypical bio-relevant molecule, it reveals the explicit role of molecular symmetry and tautomerism in the ionization-triggered charge migration that controls many ultrafast physical, chemical, and biological processes, making tautomeric forms a promising tool of molecular design for desired charge migration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源