论文标题

在线列表标签:打破$ \ log^2n $屏障

Online List Labeling: Breaking the $\log^2n$ Barrier

论文作者

Bender, Michael A., Conway, Alex, Farach-Colton, Martín, Komlós, Hanna, Kuszmaul, William, Wein, Nicole

论文摘要

在线列表标签问题是一种算法原始的,具有大量上限,下限和应用的文献。目的是将动态变化的$ n $项目集存储在$ m $插槽的阵列中,同时保持这些项目以排序顺序出现的不变性,并最大程度地减少重新标记的成本,定义为每个插入/删除的项目数量。 对于线性制度,其中$ m =(1 +θ(1))n $,自1981年以来就已经知道了$ O(\ log^2 n)$的上限。自1981年以来就已经知道。$ω(\ log^2 n)$的下限以确定性的算法和所谓的平滑algorith $而闻名,但最佳的log $ log $ whem $ whem ungorlient $ whem $ fog ungove(该领域的中心开放问题是$ O(\ log^2 n)$是否对所有算法都是最佳的。 在本文中,我们给出了一个随机数据结构,该结构可实现每次操作的预期重新标记成本为$ O(\ log^{3/2} n)$。更一般地,如果$ m =(1 + \ varepsilon)n $ for $ \ varepsilon = o(1)$,则预期的重新标签成本变为$ O(\ varepsilon^{ - 1} \ log^{3/2} {3/2} n)$。 我们的解决方案是独立的,这意味着数据结构的状态与插入/删除项目的顺序无关。对于独立于历史的数据结构,我们还证明了一个匹配的下限:对于$ 1/n^{1/3} $之间的所有$ε$,以及一些足够小的正常常数,这是与历史无关的列表标记解决方案的最佳预期成本为$θ(\ varepsilon^{ - varepsilon^{ - 1}} { - log log^\ log^^{3/2} n)$。

The online list labeling problem is an algorithmic primitive with a large literature of upper bounds, lower bounds, and applications. The goal is to store a dynamically-changing set of $n$ items in an array of $m$ slots, while maintaining the invariant that the items appear in sorted order, and while minimizing the relabeling cost, defined to be the number of items that are moved per insertion/deletion. For the linear regime, where $m = (1 + Θ(1)) n$, an upper bound of $O(\log^2 n)$ on the relabeling cost has been known since 1981. A lower bound of $Ω(\log^2 n)$ is known for deterministic algorithms and for so-called smooth algorithms, but the best general lower bound remains $Ω(\log n)$. The central open question in the field is whether $O(\log^2 n)$ is optimal for all algorithms. In this paper, we give a randomized data structure that achieves an expected relabeling cost of $O(\log^{3/2} n)$ per operation. More generally, if $m = (1 + \varepsilon) n$ for $\varepsilon = O(1)$, the expected relabeling cost becomes $O(\varepsilon^{-1} \log^{3/2} n)$. Our solution is history independent, meaning that the state of the data structure is independent of the order in which items are inserted/deleted. For history-independent data structures, we also prove a matching lower bound: for all $ε$ between $1 / n^{1/3}$ and some sufficiently small positive constant, the optimal expected cost for history-independent list-labeling solutions is $Θ(\varepsilon^{-1}\log^{3/2} n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源