论文标题
基于Q学习的深度学习资源分配在干扰系统中具有停机约束
Deep Q-Learning Based Resource Allocation in Interference Systems With Outage Constraint
论文作者
论文摘要
此通信考虑了在链接中断约束下的无线干扰通道(IC)中的资源分配问题。由于优化问题本质上是非凸的,因此发现最佳功率分配的现有方法在计算密集型上是不可行的。最近,深度加强学习在解决非凸优化问题方面显示出令人鼓舞的结果,并降低了复杂性。在此通信中,我们使用了一种深Q学习方法(DQL)方法,该方法与无线环境相互作用,并了解无线IC的最佳功率分配,同时最大程度地提高系统的总和率并维持每个链接的可靠性要求。我们已经使用了两个独立的深Q-Networks来消除学习过程中固有的不稳定性。仿真结果表明,所提出的DQL方法的表现优于现有的基于几何编程的解决方案。
This correspondence considers the resource allocation problem in wireless interference channel (IC) under link outage constraints. Since the optimization problem is non-convex in nature, existing approaches to find the optimal power allocation are computationally intensive and thus practically infeasible. Recently, deep reinforcement learning has shown promising outcome in solving non-convex optimization problems with reduced complexity. In this correspondence, we utilize a deep Q-learning (DQL) approach which interacts with the wireless environment and learns the optimal power allocation of a wireless IC while maximizing overall sum-rate of the system and maintaining reliability requirement of each link. We have used two separate deep Q-networks to remove the inherent instability in learning process. Simulation results demonstrate that the proposed DQL approach outperforms existing geometric programming based solution.