论文标题
股票排列
Coprime permutations
论文作者
论文摘要
令$ c(n)$表示$ [n] = \ {n] = \ {1,2,\ dots,n \} $的排列数量,以使每个$ j \ in [n] $ in [n] $ in [n] $中的每个$ j \。我们证明,对于$ n $,足够大,$ n!/3.73^ <c(n)<n!/2.5 n$。
Let $C(n)$ denote the number of permutations $σ$ of $[n]=\{1,2,\dots,n\}$ such that $\gcd(j,σ(j))=1$ for each $j\in[n]$. We prove that for $n$ sufficiently large, $n!/3.73^n < C(n) < n!/2.5^n$.