论文标题

MSDN:用于零拍学习的相互语义蒸馏网络

MSDN: Mutually Semantic Distillation Network for Zero-Shot Learning

论文作者

Chen, Shiming, Hong, Ziming, Xie, Guo-Sen, Yang, Wenhan, Peng, Qinmu, Wang, Kai, Zhao, Jian, You, Xinge

论文摘要

零射击学习(ZSL)的主要挑战是如何推断出可见类的视觉和属性特征之间的潜在语义知识,从而实现了理想的知识转移到看不见的类。先前的作品要么简单地将图像的全局特征与其关联的类语义向量保持一致,要么利用单向关注来学习有限的潜在语义表示,这些语义表示无法有效地发现视觉和属性特征之间的内在语义知识,例如属性语义语义)。为了解决上述困境,我们提出了一个相互的语义蒸馏网络(MSDN),该网络逐渐提炼了ZSL的视觉和属性特征之间的内在语义表示。 MSDN结合了一个属性$ \ rightarrow $ Visual注意子网,该子网络学习基于属性的视觉功能,以及一个视觉$ \ rightarrow $属性注意子网,该子网学习基于视觉的属性功能。通过进一步引入语义蒸馏损失,两个相互关注的子网络能够在整个培训过程中进行协作学习和相互教学。拟议的MSDN对强大的基线产生了重大改进,从而在三个流行的挑战性基准(即Cub,Sun和Awa2)上获得了新的最新性能。我们的代码已在:\ url {https://github.com/shiming-chen/msdn}上。

The key challenge of zero-shot learning (ZSL) is how to infer the latent semantic knowledge between visual and attribute features on seen classes, and thus achieving a desirable knowledge transfer to unseen classes. Prior works either simply align the global features of an image with its associated class semantic vector or utilize unidirectional attention to learn the limited latent semantic representations, which could not effectively discover the intrinsic semantic knowledge e.g., attribute semantics) between visual and attribute features. To solve the above dilemma, we propose a Mutually Semantic Distillation Network (MSDN), which progressively distills the intrinsic semantic representations between visual and attribute features for ZSL. MSDN incorporates an attribute$\rightarrow$visual attention sub-net that learns attribute-based visual features, and a visual$\rightarrow$attribute attention sub-net that learns visual-based attribute features. By further introducing a semantic distillation loss, the two mutual attention sub-nets are capable of learning collaboratively and teaching each other throughout the training process. The proposed MSDN yields significant improvements over the strong baselines, leading to new state-of-the-art performances on three popular challenging benchmarks, i.e., CUB, SUN, and AWA2. Our codes have been available at: \url{https://github.com/shiming-chen/MSDN}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源