论文标题

Verlinde类别中一般线性组的表示

Representations of General Linear Groups in the Verlinde Category

论文作者

Venkatesh, Siddharth

论文摘要

在本文中,我们构建了Aggine Group Shemes $ gl(x)$,其中$ x $是特征性$ p $的Verlinde类别中的任何对象,并对其不可约说明进行了分类。我们首先显示,对于一个简单的对象$ x $,分类尺寸$ i $,此表示类别是半impleple,相当于$ sl_ {i} $的Verlinde类别的连接组件。随后,我们将其与Verma模块结构一起使用,以对任何简单对象$ l $和任何自然数字$ n $的$ gl(nl)$的不可减至表示形式进行分类。最后,抛物线诱导使我们能够对$ gl(x)$的不可约表示,其中$ x $是Verlinde类别中的任何对象。

In this article, we construct affine group schemes $GL(X)$ where $X$ is any object in the Verlinde category in characteristic $p$ and classify their irreducible representations. We begin by showing that for a simple object $X$ of categorical dimension $i$, this representation category is semisimple and is equivalent to the connected component of the Verlinde category for $SL_{i}$. Subsequently, we use this along with a Verma module construction to classify irreducible representations of $GL(nL)$ for any simple object $L$ and any natural number $n$. Finally, parabolic induction allows us to classify irreducible representations of $GL(X)$ where $X$ is any object in the Verlinde Category.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源