论文标题
在存在矩形障碍物的情况下,最远的Voronoi图
Farthest-point Voronoi diagrams in the presence of rectangular obstacles
论文作者
论文摘要
我们提出了一种算法,以计算$ m $ $点位点的测量$ l_1 $ l_1 $ l_1 $ l_1 $ l_1 $ l_1 $ l_1 $ l_1 $ n $矩形障碍物。使用$ O(nm)$(nm)$ space $ o(nm + n \ log n + m \ log m)$构造时间。这是在存在障碍物的情况下构建最远的Voronoi图的第一种最佳算法。我们可以在相同的施工时间和空间中构建数据结构,以$ O(\ log(n+m))$时间回答最远的邻居查询。
We present an algorithm to compute the geodesic $L_1$ farthest-point Voronoi diagram of $m$ point sites in the presence of $n$ rectangular obstacles in the plane. It takes $O(nm+n \log n + m\log m)$ construction time using $O(nm)$ space. This is the first optimal algorithm for constructing the farthest-point Voronoi diagram in the presence of obstacles. We can construct a data structure in the same construction time and space that answers a farthest-neighbor query in $O(\log(n+m))$ time.