论文标题
Gatortron:一种大型临床语言模型,可从非结构化电子健康记录中解开患者信息
GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records
论文作者
论文摘要
对开发人工智能(AI)系统来处理和解释电子健康记录(EHRS)的兴趣越来越多。由验证的语言模型提供支持的自然语言处理(NLP)是利用临床叙事的医学AI系统的关键技术。但是,很少有临床语言模型,其中最大的临床领域训练在1.1亿参数(与一般域中的数十亿个参数相比)相对较小。目前尚不清楚具有数十亿个参数的大型临床语言模型可以帮助医疗AI系统利用非结构化的EHR。在这项研究中,我们使用> 900亿个文本单词(包括> 820亿个识别临床文本的单词)开发出大型临床语言模型-Gatortron-,并在5个临床NLP任务上进行了系统的评价,包括临床概念提取,包括医疗关系提取,语义文本相似性,自然语言相似性,自然语言推荐(NLI)和医学答案(MQA)。我们检查(1)如何扩大参数的数量,(2)扩大训练数据的大小可以使这些NLP任务受益。 Gatortron模型将临床语言模型从1.1亿升至89亿参数,并改善5个临床NLP任务(例如,NLI和MQA的准确性提高了9.6%和9.5%),可以将其应用于医疗AI系统以改善医疗保健服务。 Gatortron模型可公开可用:https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og。
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.