论文标题

深度观察:中风严重程度测量的分割辅助模型

Deep-ASPECTS: A Segmentation-Assisted Model for Stroke Severity Measurement

论文作者

Upadhyay, Ujjwal, Ranjan, Mukul, Golla, Satish, Tanamala, Swetha, Sreenivas, Preetham, Chilamkurthy, Sasank, Pandian, Jeyaraj, Tarpley, Jason

论文摘要

当大脑中的动脉破裂和流血或切断大脑的血液供应时,就会发生中风。由于破裂或阻塞导致组织死亡,血液和氧气无法到达大脑组织。大脑中动脉(MCA)是脑动脉最大,是中风中最常见的血管。 MCA提供的领土上的血流中断引起的聚焦神经缺陷的快速发作被称为MCA中风。 Alberta中风计划早期CT评分(方面)用于估计MCA中风患者早期缺血性变化的程度。这项研究提出了一种基于深度学习的方法,以对方面的CT扫描进行评分。我们的工作有三个亮点。首先,我们提出了一种用于中风检测的医学图像分割的新方法。其次,我们显示了AI解决方案对给定非对比度CT(NCCT)扫描的诊断时间减少的诊断时间的有效性。我们的算法显示,MCA解剖学分割的骰子相似系数为0.64,梗塞分割的骰子系数为0.72。最后,我们表明我们的模型的性能与放射科医生之间的读取器间变异性有关。

A stroke occurs when an artery in the brain ruptures and bleeds or when the blood supply to the brain is cut off. Blood and oxygen cannot reach the brain's tissues due to the rupture or obstruction resulting in tissue death. The Middle cerebral artery (MCA) is the largest cerebral artery and the most commonly damaged vessel in stroke. The quick onset of a focused neurological deficit caused by interruption of blood flow in the territory supplied by the MCA is known as an MCA stroke. Alberta stroke programme early CT score (ASPECTS) is used to estimate the extent of early ischemic changes in patients with MCA stroke. This study proposes a deep learning-based method to score the CT scan for ASPECTS. Our work has three highlights. First, we propose a novel method for medical image segmentation for stroke detection. Second, we show the effectiveness of AI solution for fully-automated ASPECT scoring with reduced diagnosis time for a given non-contrast CT (NCCT) Scan. Our algorithms show a dice similarity coefficient of 0.64 for the MCA anatomy segmentation and 0.72 for the infarcts segmentation. Lastly, we show that our model's performance is inline with inter-reader variability between radiologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源