论文标题
艺术点:通过对抗性旋转提高点云分类器的旋转稳健性
ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via Adversarial Rotation
论文作者
论文摘要
在3D深度学习社区中广泛讨论了具有旋转鲁棒性的点云分类器。大多数提出的方法要么使用旋转不变描述符作为输入,要么尝试设计旋转模棱两可的网络。但是,由于原始分类器或输入空间的修改,这些方法生成的强大模型在干净的对齐数据集中的性能有限。在这项研究中,我们首次表明,点云分类器的旋转稳健性也可以通过对抗训练获得,并在旋转和清洁数据集上具有更好的性能。具体而言,我们提出的名为Art-Point的框架将点云的旋转视为攻击,并通过训练分类器对具有对抗性旋转的输入来提高旋转稳健性。我们贡献了轴心旋转攻击,该旋转攻击使用预训练模型的后传播梯度有效地找到对抗性旋转。为了避免对对抗输入的模型过度拟合,我们构建了旋转池,以利用样品之间对抗性旋转的转移性来增加训练数据的多样性。此外,我们提出了一个快速的一步优化,以有效地达到最终的鲁棒模型。实验表明,我们提出的旋转攻击达到了高成功率,并且可以在大多数现有的分类器上使用高成功率,以提高旋转鲁棒性,同时在干净的数据集上比最先进的方法显示出更好的性能。
Point cloud classifiers with rotation robustness have been widely discussed in the 3D deep learning community. Most proposed methods either use rotation invariant descriptors as inputs or try to design rotation equivariant networks. However, robust models generated by these methods have limited performance under clean aligned datasets due to modifications on the original classifiers or input space. In this study, for the first time, we show that the rotation robustness of point cloud classifiers can also be acquired via adversarial training with better performance on both rotated and clean datasets. Specifically, our proposed framework named ART-Point regards the rotation of the point cloud as an attack and improves rotation robustness by training the classifier on inputs with Adversarial RoTations. We contribute an axis-wise rotation attack that uses back-propagated gradients of the pre-trained model to effectively find the adversarial rotations. To avoid model over-fitting on adversarial inputs, we construct rotation pools that leverage the transferability of adversarial rotations among samples to increase the diversity of training data. Moreover, we propose a fast one-step optimization to efficiently reach the final robust model. Experiments show that our proposed rotation attack achieves a high success rate and ART-Point can be used on most existing classifiers to improve the rotation robustness while showing better performance on clean datasets than state-of-the-art methods.