论文标题

Manakov方程式的非分类Kuznetsov-Ma孤子及其物理光谱

Non-degenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra

论文作者

Che, Wen-Juan, Chen, Shao-Chun, Liu, Chong, Zhao, Li-Chen, Akhmediev, Nail

论文摘要

我们研究了矢量非线性Schrödinger(Manakov)方程框架中Kuznetsov-MA孤子(KMS)的动力学。得出了此类KMS的确切的多参数解决方案家族。该解决方案家族包括已知的结果以及以前未知的解决方案,以非分类KMS的形式。我们介绍了从确切解决方案遵循的此类KMS的存在图。这些非分类KMS是由两个基本KMS的非线性叠加形成的,它们具有相同的传播期,但特征值不同。我们介绍了新解决方案的幅度曲线,它们的确切物理光谱,它们与普通向量孤子的联系,并使用数值模拟提供了简单的激发方式。

We study the dynamics of Kuznetsov-Ma solitons (KMS) in the framework of vector nonlinear Schrödinger (Manakov) equations. Exact multi-parameter family of solutions for such KMSs is derived. This family of solutions includes the known results as well as the previously unknown solutions in the form of the non-degenerate KMSs. We present the existence diagram of such KMSs that follows from the exact solutions. These non-degenerate KMSs are formed by nonlinear superposition of two fundamental KMSs that have the same propagation period but different eigenvalues. We present the amplitude profiles of new solutions, their exact physical spectra, their link to ordinary vector solitons and offer easy ways of their excitation using numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源