论文标题
JWST NIRSPEC实验室时间序列的分析:表征系统学,恢复系外行星的传输光谱和约束噪声底
Analysis of a JWST NIRSpec Lab Time Series: Characterizing Systematics, Recovering Exoplanet Transit Spectroscopy, and Constraining a Noise Floor
论文作者
论文摘要
詹姆斯·韦伯(James Webb)太空望远镜的NIRSPEC仪器将揭示从温带地面世界到超霍特木星的各种各样的行星类型的系外行星氛围的性质。特别是,0.6-5.3微米棱镜模式特别适合有效的光谱系外行星观测值,涵盖了许多重要的光谱特征。我们从JWST用户的角度分析了实验室测量的NIRSPEC PRISM模式Bright对象时间序列(BOT)观察,以了解仪器性能和检测器属性。我们通过对实验室测量数据进行注射回收测试来量化实际仪器抖动,漂移,插发室内灵敏度变化以及1/$ f $噪声对测量的传输光谱的影响,从而创建了两个现实的透射系外行星时间序列序列观测值。通过与注入的过境同时拟合时间序列系统,我们可以获得更逼真的过境深度不确定性,这些不确定性考虑了当前未由传统暴露时间计算器建模的噪声源。我们发现,在几百ppm的水平的数据中显而易见,与互化敏感性变化和PSF运动相关的系统噪声源很明显,但可以使用具有检测器位置的低阶多项式有效地削弱。我们恢复了GJ 436 B和Trappist-1 D的注入光谱特征,并在14 ppm的检测器噪声底上放置3-sigma上限。我们发现,噪声底与1.7 sigma水平的<10 ppm一致,这对于以后对具有微弱大气标志的挑战目标的观察非常好。
The James Webb Space Telescope's NIRSpec instrument will unveil the nature of exoplanet atmospheres across the wealth of planet types, from temperate terrestrial worlds to ultrahot Jupiters. In particular, the 0.6-5.3 micron PRISM mode is especially well-suited for efficient spectroscopic exoplanet observations spanning a number of important spectral features. We analyze a lab-measured NIRSpec PRISM mode Bright Object Time Series (BOTS) observation from the perspective of a JWST user to understand the instrument performance and detector properties. We create two realistic transiting exoplanet time series observations by performing injection-recovery tests on the lab-measured data to quantify the effects of real instrument jitter, drift, intrapixel sensitivity variations, and 1/$f$ noise on measured transmission spectra. By fitting the time series systematics simultaneously with the injected transit, we can obtain more realistic transit depth uncertainties that take into account noise sources that are currently not modeled by traditional exposure time calculators. We find that sources of systematic noise related to intrapixel sensitivity variations and PSF motions are apparent in the data at the level of a few hundred ppm, but can be effectively detrended using a low-order polynomial with detector position. We recover the injected spectral features of GJ 436 b and TRAPPIST-1 d, and place a 3-sigma upper limit on the detector noise floor of 14 ppm. We find that the noise floor is consistent with <10 ppm at the 1.7-sigma level, which bodes well for future observations of challenging targets with faint atmospheric signatures.