论文标题
$ \ MATHCAL {N} = 4 $ SUPER YANG-MILLS理论中的三点能量相关器
Three-point energy correlator in $\mathcal{N}=4$ super Yang-Mills Theory
论文作者
论文摘要
在最大超对称的Yang-Mills理论($ \ Mathcal {n} = 4 $ sym)中给出了三点能量相关器(EEEC)的分析公式。这是可观察到的三参数事件形状的第一个分析计算,该计算为从共形场理论到喷气子结构的各种研究提供了有价值的数据。关联的功能类定义了一种以16个字母字母为特征的新型的单值小聚集体,该字母表现出$ d_6 \ times z_2 $二二二二二二邻二膜对称性。凭借EEEC扰动结构中未开发的简单性,现在都可以使用所有运动区域,包括共线,挤压和共面限制。
An analytic formula is given for the three-point energy correlator (EEEC) at leading order (LO) in maximally supersymmetric Yang-Mills theory ($\mathcal{N}=4$ sYM). This is the first analytic calculation of a three-parameter event shape observable, which provides valuable data for various studies ranging from conformal field theories to jet substructure. The associated class of functions define a new type of single-valued polylogarithms characterized by 16 alphabet letters, which manifest a $D_6 \times Z_2$ dihedral symmetry of the event shape. With the unexplored simplicity in the perturbative structure of EEEC, all kinematic regions including collinear, squeezed and coplanar limits are now available.